Loading…

Colloidal stability of halloysite clay nanotubes

The colloidal stability of halloysite clay nanotubes dispersion is reviewed showing the strategy and the mechanism to obtain stable systems in water and apolar solvents. The selective modification of halloysite inner/outer surfaces can be achieved by exploiting electrostatic interactions. The adsorp...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2019-02, Vol.45 (2), p.2858-2865
Main Authors: Lisuzzo, Lorenzo, Cavallaro, Giuseppe, Parisi, Filippo, Milioto, Stefana, Lazzara, Giuseppe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The colloidal stability of halloysite clay nanotubes dispersion is reviewed showing the strategy and the mechanism to obtain stable systems in water and apolar solvents. The selective modification of halloysite inner/outer surfaces can be achieved by exploiting electrostatic interactions. The adsorption of anionic surfactants onto the halloysite cavity allows generating inorganic cylindrical micelles that can be separated from the solvent. On the other hand, the functionalization of halloysite shell by positively charged surfactants drives to obtain stable water-in-oil emulsions. The interactions with ionic and nonionic polymers alters the dispersability of halloysite due to electrostatic and steric effects that are strongly dependent on the nanoarchitecture of the hybrid systems. Modified nanotubes by selective interactions lead to the formation of colloidal systems with tuneable surface properties and controlled colloidal stability adjusted to the solvent polarity. These dispersions are perspectives nanocarriers for substances such as antioxidants, biocides, drugs and corrosion inhibitors, to be released in response to external stimuli.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2018.07.289