Loading…

Preparation and characterization of porous ceramics from nickel smelting slag and metakaolin

Porous ceramics with high porosity and low bulk density were prepared by using nickel slag and metakaolin as the primary raw materials, glass powder as flux, and SiC as the foaming agent. The content of nickel slag and foaming agent had a significant effect on the bulk density, porosity, and flexura...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2020-03, Vol.46 (4), p.4581-4586
Main Authors: Wu, Qisheng, Chen, Qiujing, Huang, Zichen, Gu, Bin, Zhu, Huajun, Tian, Liang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Porous ceramics with high porosity and low bulk density were prepared by using nickel slag and metakaolin as the primary raw materials, glass powder as flux, and SiC as the foaming agent. The content of nickel slag and foaming agent had a significant effect on the bulk density, porosity, and flexural strength of the porous ceramics. The porous ceramics with the best properties were obtained at 1100 °C for 30 min with 50 wt% nickel slag, 40 wt% metakaolin, 10 wt% waste glass, and 0.8 wt% SiC. It had a low bulk density (as low as 245 kg/m3), high flexural strength and compressive strength (0.6 MPa and 1.17 MPa, respectively), and high porosity (about 89.8%). The nickel slag was magnetically separated as well. The density of nickel slag powder could be reduced via magnetic separation, and there was no significant change in the crystal structure of the raw material. Compared with porous ceramics prepared using nickel slag without magnetic separation, ceramics subjected to magnetic separation had lower bulk density, higher porosity, and the same phase composition. This study can be used as an indicator for the application of nickel slag in porous ceramics, which is of great significance in providing a great substitute nickel slag towards recovery and utilization.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2019.10.187