Loading…

The optical spectra characterization of Cr2+:ZnSe polycrystalline synthesized by direct reaction of Zn–Cr alloy and element Se

Cr2+:ZnSe materials have attracted much attention as candidates for mid-infrared laser source either in the form of polycrystalline powders, or bulk ceramics, single crystals and nano-materials. In this work, a novel method for synthesizing Cr2+:ZnSe polycrystalline by direct reaction of Zn–Cr alloy...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2020-09, Vol.46 (13), p.21136-21140
Main Authors: Wei, Yucheng, Liu, Changyou, Ma, En, Lu, Zeyu, Wang, Fangyuan, Song, Yuchen, Sun, Qihao, Jie, Wanqi, Wang, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cr2+:ZnSe materials have attracted much attention as candidates for mid-infrared laser source either in the form of polycrystalline powders, or bulk ceramics, single crystals and nano-materials. In this work, a novel method for synthesizing Cr2+:ZnSe polycrystalline by direct reaction of Zn–Cr alloy and element Se (DRAE) was proposed. The zinc alloy containing 0.1 at% Cr was prepared by dissolving Cr in zinc liquid in a closed quartz ampoule. X-ray diffraction (XRD) results showed that the synthesized Cr2+:ZnSe polycrystalline was with a Zinc-blend structure. X-ray photoelectron spectroscopy (XPS) spectra showed that there was no un-reacted element of Zn, or Se. Cr2+ ions successfully and uniformly doped into ZnSe crystal lattice, which is confirmed by the diffuse reflectance spectrum, Raman spectrum and mid-infrared photoluminescence spectra. Furthermore, the sample showed excellent mid-infrared properties without luminescence quenching in the region 1800–3000 nm, and the decay-time was about 5 μs. The as-synthesized Cr2+:ZnSe polycrystalline meets the requirement for the preparation of mid-infrared ceramic or single crystals. These results indicate that the novel strategy of DRAE is valid for the synthesis of other transition metal doped ZnSe materials. [Display omitted]
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2020.05.190