Loading…
A comprehensive study on copper incorporated bio-glass matrix for its potential antimicrobial applications
In this study, sol-gel derived Cu substituted 70S bioglass (70SiO2-(20-x) CaO–10P2O5-xCuO; where x = 0, 0.5, 1, 1.5) were synthesized as a new multifunctional bioactive glasses (BGs). The effect of Cu substitution in the bio-glass matrix was evaluated for its impact on pathogen (Escherichia coli and...
Saved in:
Published in: | Ceramics international 2021-01, Vol.47 (1), p.424-433 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, sol-gel derived Cu substituted 70S bioglass (70SiO2-(20-x) CaO–10P2O5-xCuO; where x = 0, 0.5, 1, 1.5) were synthesized as a new multifunctional bioactive glasses (BGs). The effect of Cu substitution in the bio-glass matrix was evaluated for its impact on pathogen (Escherichia coli and Staphylococcus aurous). Fourier Transform Infrared spectroscopy (FT-IR), Thermogravimetric Analysis (TGA), X-Ray Diffraction (XRD), Inductively Coupled Plasma spectroscopy (ICP) and Scanning Electron Microscopy (SEM) revealed that the obtained powders are amorphous silicate glass. The substituted element is present in the desired molar concentration. In vitro bioactivity test was performed in SBF solution by immersion of bioglass pellets. Antibacterial test was carried out against Escherichia coli and Staphylococcus aureus. The results showed that the prepared BGs have a high acellular bioactivity observed by a fast formation of thick and continuous layer of carbonated hydroxyapatite (CHA). The antibacterial properties of the substituted bio-glass matrix was indicated by the growth inhibition of bacterial colonies. The obtained results showed that copper substituted bio-glass is having potential to avoid post-surgical infections and it also represents the capability of hard tissue regeneration. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2020.08.149 |