Loading…

Giant piezoelectric coefficient of PNN-PZT-based relaxor piezoelectric ceramics by constructing an R-T MPB

xTa-PNN-PZT piezoelectric ceramics with [0.55 Pb(Ni1/3Nb2/3)O3 - 0.45 Pb(Zr0.3Ti0.7)O3 - xwt%Ta2O5] + 1 wt% PbO composition (0 ≤ x ≤ 0.7) were prepared by conventional solid-state reaction method. Special attention was paid to the effect of Ta2O5 concentration on structural, dielectric, piezoelectri...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2021-05, Vol.47 (9), p.12284-12291
Main Authors: Wang, Hongliang, Zhang, Feifei, Chen, Yu, Huang, Chenting, Wang, Xiaoyu, Wu, Xiaojun, Chen, Yulin, Xu, Yugen, Guan, Shangyi, Zhu, Jianguo, Chen, Qiang, Xing, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:xTa-PNN-PZT piezoelectric ceramics with [0.55 Pb(Ni1/3Nb2/3)O3 - 0.45 Pb(Zr0.3Ti0.7)O3 - xwt%Ta2O5] + 1 wt% PbO composition (0 ≤ x ≤ 0.7) were prepared by conventional solid-state reaction method. Special attention was paid to the effect of Ta2O5 concentration on structural, dielectric, piezoelectric, and ferroelectric properties of these ceramics. In particular, rhombohedral-tetragonal morphotropic phase boundary was observed in PNN-PZT crystal structure near the composition of x = 0.5. At this point, volume fraction of rhombohedral phase was almost equal to that of tetragonal phase. In addition, the ceramic exhibited the optimum values of piezoelectric coefficient, bipolar strain, unipolar strain, and inverse piezoelectric coefficient, i.e., 1090 pC/N, 0.135%, 0.165%, and 1493 pm/V, respectively. Moreover, according to in-situ X-ray diffraction, piezoelectric force microscopy, and in-situ strain measurement results, phase structure of 0.5Ta-PNN-PZT revealed relatively stable piezoelectric behavior at 60 °C.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2021.01.079