Loading…

In-situ self-assembly of sandwich-like Ti3C2 MXene/gold nanorods nanosheets for synergistically enhanced near-infrared responsive drug delivery

As a novel two-dimensional material, Ti3C2 MXenes has attracted lots of attention in biomedical filed for its large surface area and excellent near-infrared (NIR) responsiveness. In this paper, an in-situ growth and self-assembly approach was employed to combine gold nanorods (GNRs) with Ti3C2 nanos...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2021-09, Vol.47 (17), p.24252-24261
Main Authors: Zhu, Beibei, Shi, Jun, Liu, Chongchong, Li, Jingguo, Cao, Shaokui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a novel two-dimensional material, Ti3C2 MXenes has attracted lots of attention in biomedical filed for its large surface area and excellent near-infrared (NIR) responsiveness. In this paper, an in-situ growth and self-assembly approach was employed to combine gold nanorods (GNRs) with Ti3C2 nanosheets to prepare intelligent sandwich-like Ti3C2@GNRs/PDA/Ti3C2 nanohybrids. Compared with Ti3C2 nanosheets, in-situ growth Ti3C2@GNRs possessed excellent photothermal conversion efficiency (45.89%), caused by the distinguished photothermal synergy between GNRs and Ti3C2 nanosheets. Moreover, the high specific surface area of Ti3C2 MXene and outstanding adhesion performance of PDA endowed Ti3C2@GNRs/PDA/Ti3C2 nanohybrids with superior drug loading ability for doxorubicin hydrochloride (DOX) (95.88%). Besides, Ti3C2@GNRs/PDA/Ti3C2 nanohybrids displayed distinct pH/NIR responsive drug release properties upon NIR irradiation owing to the strong π-π stacking interaction between Ti3C2@GNRs/PDA/Ti3C2 and DOX, along with the excellent NIR-responsiveness of Ti3C2@GNRs/PDA/Ti3C2. This paper offers a practicable method to prepare Ti3C2 MXene-based nanoplatform with synergistically enhanced NIR drug release behavior, brilliant biocompatibility and high drug loading efficiency, which is expected to be applied in remote cancer therapy.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2021.05.136