Loading…
Mechanisms of the relaxations in (In + Nb) co-doped TiO2 ceramics
(In0·5Nb0.5)0.1Ti0·9O2 ceramic sample was prepared by sol-gel method. The dielectric properties of this sample were investigated in a temperature range of 5–320 K. Two thermally activated relaxations were found. The low-temperature relaxation (P0-relaxation) appearing around 50 K follows the Vogel-F...
Saved in:
Published in: | Ceramics international 2021-09, Vol.47 (18), p.26019-26024 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | (In0·5Nb0.5)0.1Ti0·9O2 ceramic sample was prepared by sol-gel method. The dielectric properties of this sample were investigated in a temperature range of 5–320 K. Two thermally activated relaxations were found. The low-temperature relaxation (P0-relaxation) appearing around 50 K follows the Vogel-Fulcher law and is ascribed to be a low-temperature Maxwell-Wagner relaxation caused by frozen electrons. The intermediate-temperature relaxation (P1-relaxation) occurring around 150 K obeys the Arrhenius law. Thermally activated depolarization current (TSDC) investigations reveal that it contains two relaxation processes (P1’ and P1 peaks). This relaxation was argued to be a polaronic relaxation caused by electrons hopping between Ti3+ and Ti4+ ions. TSDC also reveals a high-temperature relaxation (P2 peak) near room temperature, which is related to humidity sensing property. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2021.06.007 |