Loading…

Ultra-fast charge-discharge and high energy storage density realized in NaNbO3–La(Mn0.5Ni0.5)O3 ceramics

Lead-free antiferroelectric (AFE) NaNbO3 (NN) is one of promising materials for dielectric capacitors, but the recoverable energy-storage density and efficiency get restrained owing to huge remanent polarization and limited dielectric breakdown field strength. In this work, a variety of NN based lea...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2021-10, Vol.47 (20), p.28493-28499
Main Authors: Wang, Jitong, Nie, Xinru, Peng, Zhanhui, Lei, Xiaoping, Liang, Pengfei, Yang, Zupei, Chao, Xiaolian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lead-free antiferroelectric (AFE) NaNbO3 (NN) is one of promising materials for dielectric capacitors, but the recoverable energy-storage density and efficiency get restrained owing to huge remanent polarization and limited dielectric breakdown field strength. In this work, a variety of NN based lead-free bulk (1-x)NaNbO3-xLa(Mn0.5Ni0.5)O3 (abbreviated as (1-x)NN-xLMN, x = 0, 0.05, 0.10, 0.15, 0.20) ceramics were designed using a solid-state synthesis method. Remarkably, an ultra-fast charge-discharge speed 47 ns and an acceptable recoverable energy-storage density Wrec ~1.77 J/cm3 with a high efficiency η = 77% were obtained under the Eb of 200 kV/cm at x = 0.05. The superior energy storage performance is attributed to the regulation of domain size and voltage resistance by special ions substitution of A and B sites. This work not only proposes an efficient strategy to realize high recoverable energy-storage density and efficiency, but also provide an candidate material for application of advanced pulsed power capacitors.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2021.07.004