Loading…
Effect of coating and surface modification on water and organic solvent nanofiltration using ceramic hollow fiber membrane
Nanofiltration ceramic hollow fiber membranes were developed to simplify the manufacturing process and improve water and organic solvent permeation performance. The alumina hollow fiber support was prepared by a phase-inversion/sintering method, and a γ-Al2O3 sol was coated thereon as a selective la...
Saved in:
Published in: | Ceramics international 2021-12, Vol.47 (24), p.34020-34027 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanofiltration ceramic hollow fiber membranes were developed to simplify the manufacturing process and improve water and organic solvent permeation performance. The alumina hollow fiber support was prepared by a phase-inversion/sintering method, and a γ-Al2O3 sol was coated thereon as a selective layer. Polyvinyl alcohol and ethanol were used as the drying control chemical additive in the coating solution, so that a coating layer could be formed without defects in only one coating step. The coating layer thickness could be adjusted to 0.6–2 μm depending on the coating drawing speed. A sintering temperature of 350 °C was selected to provide both reasonable water permeability (6.91 LMH/bar) and rejection (a molecular weight cutoff of 1000 Da or less) and to form a stable γ-Al2O3 phase. In the case of a membrane that was surface-modified with (3-chloropropyl)-trimethoxysilane, the permeability of toluene and hexane was 2.3 and 4.3 LMH/bar, respectively. The newly developed ceramic membrane showed excellent permeability and separation properties, as well as potential effectiveness for organic solvent nanofiltration applications. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2021.08.310 |