Loading…

Influence of holding time on the interfacial solid solution and mechanical properties of agglomerated white fused alumina abrasives

In this paper, the aging relationship between holding time and the interfacial solid solution was utilized to prepare high-performance agglomerated white fused alumina (AWA) abrasives. The influence of holding time on the interfacial solid solution and mechanical properties of AWA abrasives were sys...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2022-04, Vol.48 (7), p.9468-9476
Main Authors: Cao, Dan, Fang, Wen-jun, Wan, Long, Liu, Xiao-pan, Li, Jian-wei, Hong, Qiu, Hu, Wei-da, Han, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the aging relationship between holding time and the interfacial solid solution was utilized to prepare high-performance agglomerated white fused alumina (AWA) abrasives. The influence of holding time on the interfacial solid solution and mechanical properties of AWA abrasives were systematically investigated, and the grinding performance was thoroughly analyzed. The results showed that increasing the holding time caused the Al2O3 to violently infiltrate the interface between the white fused alumina (WA) particles and the vitrified bond, which led to the precipitation of a large amount of β-spodumene and monoclinic celsian in the vitrified bond and transformed the simple mechanical bonds between the WA particles and the vitrified bond into stronger chemical bonds. Thus, it was possible to control the mechanical properties of the AWA abrasives by adjusting the holding time. Specifically, after sintering at 760 °C for 4h, the single particle compressive strength and impact toughness reached the maximum values of 26 N and 63%, respectively. In comparison with the WA grinding wheel, the grinding ratio of the AWA grinding wheel was increased by 17.9% and the workpiece surface roughness was reduced by 21.1%.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2021.12.144