Loading…
Confined tailoring of CoFe2O4/MWCNTs hybrid-architectures to tune electromagnetic parameters and microwave absorption with broadened bandwidth
Multi-walled carbon nanotubes (MWCNTs) are highly alluring as an electromagnetic (EM) wave absorber owing to their multi-dimensional structure, high chemical stability, low density, and significant conduction loss, which provide great promises as an excellent EM wave absorber in practical applicatio...
Saved in:
Published in: | Ceramics international 2022-04, Vol.48 (7), p.9569-9578 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multi-walled carbon nanotubes (MWCNTs) are highly alluring as an electromagnetic (EM) wave absorber owing to their multi-dimensional structure, high chemical stability, low density, and significant conduction loss, which provide great promises as an excellent EM wave absorber in practical applications. Herein, a simple and controllable solvothermal technique is applied to synthesize cobalt ferrite/MWCNTs (CoFe2O4/MWCNTs) hybrid composite. Various analytical techniques were used to investigate the composition, morphological structure, and electromagnetic parameters of the as-prepared hybrid composite. The obtained results revealed that, a strong network of CoFe2O4 microspheres interweaved with MWCNTs in the prepared hybrid composite. The resultant CoFe2O4/MWCNTs composites achieve a minimum reflection loss (RLmin) of −50.80 dB at a thickness of 4.2 mm and effective absorption bandwidth (EAB) of 3.36 GHz at a thickness of 1.6 mm exhibiting the superior RLmin compared to the typical magnetic composite derived absorbers. This research advocates the precise development and designing of unique MWCNTs-based composites as a high-efficient and lightweight electromagnetic wave absorber. |
---|---|
ISSN: | 0272-8842 1873-3956 |
DOI: | 10.1016/j.ceramint.2021.12.155 |