Loading…

Structural, optical, morphological and electrochemical properties of ZnO and graphene oxide blended ZnO nanocomposites

A simple cost-effective co-precipitation method was adopted to prepare ZnO nanoparticles from a metal organic framework. The synthesized ZnO nanoparticles were blended with graphene oxide (GO) to prepare the ZnO-GO nanocomposite. The physicochemical properties of ZnO nanoparticles and ZnO-GO nanocom...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2023-03, Vol.49 (5), p.7284-7288
Main Authors: Sudha, D., Kumar, E. Ranjith, Shanjitha, S., Munshi, Alaa M., Al-Hazmi, Gamil A.A., El-Metwaly, Nashwa M., Kirubavathy, S. Jone
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A simple cost-effective co-precipitation method was adopted to prepare ZnO nanoparticles from a metal organic framework. The synthesized ZnO nanoparticles were blended with graphene oxide (GO) to prepare the ZnO-GO nanocomposite. The physicochemical properties of ZnO nanoparticles and ZnO-GO nanocomposite were analyzed via various techniques. The structural behavior of ZnO and ZnO-GO nanocomposite was studied by XRD and FT-IR analysis. The XRD profile confirms the hexagonal structure with an average crystallite size of 19.4 nm for ZnO and 16.2 nm for ZnO-GO nanocomposites. The functional groups and the vibration modes of the samples were examined through FT-IR. It confirms the metallic presence in the ZnO and ZnO-GO samples in the wavenumber range of 400–600 cm−1. The optical properties of ZnO and ZnO-GO were studied via UV–vis spectra. The surface morphology of the samples was recorded through FESEM, and the elemental presence in the samples was examined by EDX. It confirms that the prepared samples are spherical in shape with uniform size distributions. Cyclic voltammetry has been used to study the redox behavior of electroactive ZnO and ZnO-GO composites.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2022.10.192