Loading…

Enhanced piezoelectricity of P(VDF-TrFE) by BN nanosheets doping and leading to high performance laminated magnetoelectric composites

With the development trend of miniaturization, lightweight and portability of electronic equipment, piezoelectric devices have been widely applied to transducers, sensors and energy harvesters. Piezoelectric polymers, like poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), possess the advant...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2024-12, Vol.50 (23), p.51972-51978
Main Authors: Song, Hongrui, Liu, Huanbin, Qiu, Jing, Zhang, ShunYu, Li, Mingyu, Liu, Libo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the development trend of miniaturization, lightweight and portability of electronic equipment, piezoelectric devices have been widely applied to transducers, sensors and energy harvesters. Piezoelectric polymers, like poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), possess the advantages of light weight, good flexibility, and simple preparation methods. However, P(VDF-TrFE) films is not entirely composed of piezoelectric phase (β phase), so increasing the content of β-phase is very important for the piezoelectric property of P(VDF-TrFE) films. Doping nanomaterials with unique properties has been proved to be a feasible way to increase the content of β-phase. In this paper, hexagonal boron nitride (h-BN) nanosheets, a kind of 2-dimensional van der Waals materials with wide bandgap, as filler were doping into poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) piezoelectric films by solution casting method. The composite films as designed, in which h-BN nanosheets were uniformly dispersed in P(VDF-TrFE), achieved higher contents of piezoelectric phase (β phase). Compared with pure P(VDF-TrFE) films, the optimal P(VDF-TrFE)/BN piezoelectric film achieved a much higher piezoelectric coefficient (d33) (∼42 pC/N), also leading to a higher piezoelectric voltage output than that of pure P(VDF-TrFE). By laminating the P(VDF-TrFE)/BN films as designed with FeSiB Metglas, high magnetoelectric voltage coefficients under zero and low DC magnetic bias were achieved. In summary, this paper presents a feasible and potential method for improving PVDF piezoelectricity, which has been successfully applied in high performance magnetoelectric devices.
ISSN:0272-8842
DOI:10.1016/j.ceramint.2024.03.067