Loading…

Low temperature sintering and enhanced piezoelectric properties of BiFeO3–BaTiO3 ceramics by homogeneous calcination

The effect of calcination process on a phase evolution, a microstructure development and the piezoelectric properties were investigated in 0.75BiFeO3-0.25BaTiO3 (0.75BF-0.25BT) ceramics. At the relatively low calcination temperatures of 600 °C–650 °C, a Bi25FeO40 impurity phase was formed in additio...

Full description

Saved in:
Bibliographic Details
Published in:Ceramics international 2024-09, Vol.50 (18), p.32447-32456
Main Authors: Kim, Kang San, Choi, Ye Rok, Chae, Ki Woong, Kim, Jeong Seog, Cheon, Chae Il
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of calcination process on a phase evolution, a microstructure development and the piezoelectric properties were investigated in 0.75BiFeO3-0.25BaTiO3 (0.75BF-0.25BT) ceramics. At the relatively low calcination temperatures of 600 °C–650 °C, a Bi25FeO40 impurity phase was formed in addition to some unreacted raw materials and a perovskite phase. As the calcination temperature increased to the range of 700–900 °C, other intermediate phase BaBi4Ti4O15 was formed concurrently with small amounts of unreacted BaCO3 and perovskite matrix phase. At 950 °C a pure single perovskite phase of 0.75BF-0.25BT solid solution was observed. The sintered samples produced by using the raw powder calcined at a relatively low temperature of 600–900 °C showed a large fraction of pseudo-cubic relaxor phase (0.54–0.71 mass fraction) with the rest of a rhombohedral ferroelectric phase. They showed poor piezoelectric properties at sintering temperature below 1000 °C due to the nonuniform compositional distribution of the calcined powder. The homogeneous calcination at 950 °C for 2 h reduced greatly the optimum sintering temperature and significantly enhanced piezoelectric properties in the BF-BT ceramics. High Curie temperature as well as high piezoelectric properties were obtained at the sintering temperature as low as 920 °C: kp = 0.361, d33 = 123 pC/N and TC = 653 °C in the 0.75BF-0.25BT ceramics and kp = 0.337, d33 = 183 pC/N and TC = 525 °C in the 0.7BF-0.3BT ceramics. This low temperature sintering of the BF-BT ceramics by a homogeneous calcination could be applied to the fabrication of the lead-free multi-layer piezoelectric devices with inexpensive internal electrodes.
ISSN:0272-8842
1873-3956
DOI:10.1016/j.ceramint.2024.06.053