Loading…
A study on the influence of geometric coordination of cobalt ions on the structural, physical and optical properties of borosilicate glass
This work explores the synthesis and characterization of cobalt oxide-added borosilicate glass using the melt-quenching technique. The glass system was investigated using various methods, including X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectrosc...
Saved in:
Published in: | Ceramics international 2024-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work explores the synthesis and characterization of cobalt oxide-added borosilicate glass using the melt-quenching technique. The glass system was investigated using various methods, including X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), density measurements, UV–vis spectroscopy, photoluminescence, and electron paramagnetic resonance (EPR) spectroscopy. XRD validated the glass's amorphous nature, while FTIR results indicated significant bonding alterations, showing a transition from BO3 to BO4 units and from B3-O-Si to B4-O-Si linkages. The increased glass density further supported the formation of BO4 units. XPS analysis verified the presence of Co2+ and Co3+ ions within the glass matrix. Optical absorption studies revealed distinct electronic transitions for Co2+ ions in both tetrahedral and octahedral coordination, and for Co3+ ions in octahedral coordination, which was corroborated by EPR spectroscopy. The paramagnetic nature of Co2+ ions was analyzed, and the g-value was determined using X-band frequency. The study also noted the narrowing of the indirect band gap with the rise in the content of Co3O4, and the examination of the metallization criterion suggested a potential metallic nature for the synthesized glasses. Notably, the 0.05 mol% Co3O4-added sample exhibited a 48 % transmission rate and the highest emission, highlighting its potential as an optical bandpass filter. These findings underscore the versatility and tunability of cobalt oxide-added borosilicate glass for various optical technologies.
[Display omitted]
•Structural and optical properties of Co3O4 added in borosilicate glass were studied.•The electronic transitions revealed cobalt ions in both octahedral and tetrahedral coordination.•Co3O4 added glass exhibit multiple absorption in visible region at 535, 570, and 634 nm.•The Co3O4-added glass can be employed as band-pass filter with a wide transmission range 325–600 nm. |
---|---|
ISSN: | 0272-8842 |
DOI: | 10.1016/j.ceramint.2024.11.142 |