Loading…

Electrical resistance tomography for gas holdup in a gas-liquid stirred tank reactor

[Display omitted] •Objective of present work is to quantify the gas hold up using ERT.•To establish operating protocols of ERT for gas-liquid stirred tank.•Develop suitable data processing methodologies & establish guidelines of ERT.•Quantitative analysis of ε & compare it with reported corr...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 2017-10, Vol.170, p.476-490
Main Authors: Sardeshpande, Madhavi V., Gupta, Suraj, Ranade, Vivek V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •Objective of present work is to quantify the gas hold up using ERT.•To establish operating protocols of ERT for gas-liquid stirred tank.•Develop suitable data processing methodologies & establish guidelines of ERT.•Quantitative analysis of ε & compare it with reported correlations. Gas-Liquid flows in stirred tank reactors (STR) are used in many significant industrial operations such as hydrogenation, absorption, stripping, oxidation, hydrogenation, ozonation, chlorination, fermentation, etc. Gas-Liquid STRs are expected to perform several functions such as mixing, dispersing gas into liquid, mass and heat transfer and reactions. Gas hold up distribution and various flow regimes are the key parameters affecting performance of gas-liquid STRs. Various techniques such as visual analysis, photography, light attenuation, optical probe method are used to understand gas hold-up distribution within stirred tanks. Most of these techniques have some limitations with respect to measurement of gas hold up distribution. Electrical Resistance Tomography (ERT) is an upcoming technique for obtaining both qualitative and quantitative data on multiphase process units non-invasively and non-intrusively. In this work, an attempt was made to establish and validate the ERT technique for characterizing gas-liquid flows in a laboratory scale STR using the Rushton turbine impeller. ERT was used to study gas holdup and to identify flow regimes. The results were compared with the visual measurements as well as previously published correlations. The effect of gas flow rate, impeller speed on the mean gas holdup is discussed. The methodology and results presented in this work will be useful to effectively apply ERT for characterizing gas-liquid flows in stirred tanks.
ISSN:0009-2509
1873-4405
DOI:10.1016/j.ces.2017.04.025