Loading…

Development of an artificial neural network EMMS drag model for the simulation of fluidized beds in chemical looping combustion

[Display omitted] •Development of an Artificial Neural Network EMMS drag model to be applied in fluidized bed simulations of chemical looping combustion.•22 representative cases of CLC processes for the training of the ANN resulting in ∼ 6,350,000 individual data points, after interpolation.•Average...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 2023-12, Vol.282, p.119286, Article 119286
Main Authors: Stamatopoulos, P., Stefanitsis, D., Zeneli, M., Nikolopoulos, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-338ea7e20480ef984f16254f498a8c6eb5f1185c168edda5a2a60b1bd5e8f5283
cites cdi_FETCH-LOGICAL-c297t-338ea7e20480ef984f16254f498a8c6eb5f1185c168edda5a2a60b1bd5e8f5283
container_end_page
container_issue
container_start_page 119286
container_title Chemical engineering science
container_volume 282
creator Stamatopoulos, P.
Stefanitsis, D.
Zeneli, M.
Nikolopoulos, N.
description [Display omitted] •Development of an Artificial Neural Network EMMS drag model to be applied in fluidized bed simulations of chemical looping combustion.•22 representative cases of CLC processes for the training of the ANN resulting in ∼ 6,350,000 individual data points, after interpolation.•Average mean percentage error of less than 15% between the predictions of the ANN-EMMS and the conventional EMMS.•CFD simulations of a 1 MWth air reactor utilizing the developed ANN-EMMS model as well as three existing drag models.•Comparison of the predicted pressure profile with published experimental and numerical data: ANN-EMMS lies closest to the experimental data (10.1% deviation). The current work presents an Artificial Neural Network EMMS (ANN-EMMS) drag scheme, developed specifically for applications related to fluidized bed (FB) reactors in chemical looping combustion (CLC); the examined particles correspond to the main bed materials encountered in CLC: ilmenite, hematite and titanium oxide. The data that feed the model are generated by a custom-built MATLAB code that solves the EMMS equations. The developed ANN-EMMS model, along with three other drag models, i.e. the Gidaspow, the Wen-Yu and the conventional EMMS, are tested for their performance in CFD simulations for the conditions of the 1 MWth pilot scale FB air reactor of TU Darmstadt. The results of the simulations utilizing the ANN-EMMS followed by those of the conventional EMMS are the closest to published experimental data for the pressure profile in the reactor, while the ilmenite conversion as predicted by both models is in good agreement with published numerical data.
doi_str_mv 10.1016/j.ces.2023.119286
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ces_2023_119286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250923008424</els_id><sourcerecordid>S0009250923008424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-338ea7e20480ef984f16254f498a8c6eb5f1185c168edda5a2a60b1bd5e8f5283</originalsourceid><addsrcrecordid>eNp9kL1OwzAURj2ARCk8AJtfIMF2_hwxoVJ-pFYMwGw59nXr4sSVnRTBwquTUGamT3c4R1cHoStKUkpoeb1LFcSUEZallNaMlydoRgipE1aQ-gydx7gbz6qiZIa-7-AAzu9b6HrsDZYdlqG3xiorHe5gCL_Tf_jwjpfr9QvWQW5w6zU4bHzA_RZwtO3gZG99NymMG6y2X6BxAzpi22G1hdaqUeS839tug5VvmyFOwAU6NdJFuPzbOXq7X74uHpPV88PT4naVKFZXfZJlHGQFjOScgKl5bmjJitzkNZdcldAUhlJeKFpy0FoWksmSNLTRBXBTMJ7NET16VfAxBjBiH2wrw6egREzVxE6M1cRUTRyrjczNkYHxsYOFIKKy0CnQNoDqhfb2H_oH0ZR5jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development of an artificial neural network EMMS drag model for the simulation of fluidized beds in chemical looping combustion</title><source>ScienceDirect Journals</source><creator>Stamatopoulos, P. ; Stefanitsis, D. ; Zeneli, M. ; Nikolopoulos, N.</creator><creatorcontrib>Stamatopoulos, P. ; Stefanitsis, D. ; Zeneli, M. ; Nikolopoulos, N.</creatorcontrib><description>[Display omitted] •Development of an Artificial Neural Network EMMS drag model to be applied in fluidized bed simulations of chemical looping combustion.•22 representative cases of CLC processes for the training of the ANN resulting in ∼ 6,350,000 individual data points, after interpolation.•Average mean percentage error of less than 15% between the predictions of the ANN-EMMS and the conventional EMMS.•CFD simulations of a 1 MWth air reactor utilizing the developed ANN-EMMS model as well as three existing drag models.•Comparison of the predicted pressure profile with published experimental and numerical data: ANN-EMMS lies closest to the experimental data (10.1% deviation). The current work presents an Artificial Neural Network EMMS (ANN-EMMS) drag scheme, developed specifically for applications related to fluidized bed (FB) reactors in chemical looping combustion (CLC); the examined particles correspond to the main bed materials encountered in CLC: ilmenite, hematite and titanium oxide. The data that feed the model are generated by a custom-built MATLAB code that solves the EMMS equations. The developed ANN-EMMS model, along with three other drag models, i.e. the Gidaspow, the Wen-Yu and the conventional EMMS, are tested for their performance in CFD simulations for the conditions of the 1 MWth pilot scale FB air reactor of TU Darmstadt. The results of the simulations utilizing the ANN-EMMS followed by those of the conventional EMMS are the closest to published experimental data for the pressure profile in the reactor, while the ilmenite conversion as predicted by both models is in good agreement with published numerical data.</description><identifier>ISSN: 0009-2509</identifier><identifier>DOI: 10.1016/j.ces.2023.119286</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Artificial Neural Network ; CFD ; Chemical Looping Combustion ; EMMS ; Fluidized Beds</subject><ispartof>Chemical engineering science, 2023-12, Vol.282, p.119286, Article 119286</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-338ea7e20480ef984f16254f498a8c6eb5f1185c168edda5a2a60b1bd5e8f5283</citedby><cites>FETCH-LOGICAL-c297t-338ea7e20480ef984f16254f498a8c6eb5f1185c168edda5a2a60b1bd5e8f5283</cites><orcidid>0000-0002-7875-7025 ; 0000-0002-2465-4805 ; 0000-0002-5550-456X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Stamatopoulos, P.</creatorcontrib><creatorcontrib>Stefanitsis, D.</creatorcontrib><creatorcontrib>Zeneli, M.</creatorcontrib><creatorcontrib>Nikolopoulos, N.</creatorcontrib><title>Development of an artificial neural network EMMS drag model for the simulation of fluidized beds in chemical looping combustion</title><title>Chemical engineering science</title><description>[Display omitted] •Development of an Artificial Neural Network EMMS drag model to be applied in fluidized bed simulations of chemical looping combustion.•22 representative cases of CLC processes for the training of the ANN resulting in ∼ 6,350,000 individual data points, after interpolation.•Average mean percentage error of less than 15% between the predictions of the ANN-EMMS and the conventional EMMS.•CFD simulations of a 1 MWth air reactor utilizing the developed ANN-EMMS model as well as three existing drag models.•Comparison of the predicted pressure profile with published experimental and numerical data: ANN-EMMS lies closest to the experimental data (10.1% deviation). The current work presents an Artificial Neural Network EMMS (ANN-EMMS) drag scheme, developed specifically for applications related to fluidized bed (FB) reactors in chemical looping combustion (CLC); the examined particles correspond to the main bed materials encountered in CLC: ilmenite, hematite and titanium oxide. The data that feed the model are generated by a custom-built MATLAB code that solves the EMMS equations. The developed ANN-EMMS model, along with three other drag models, i.e. the Gidaspow, the Wen-Yu and the conventional EMMS, are tested for their performance in CFD simulations for the conditions of the 1 MWth pilot scale FB air reactor of TU Darmstadt. The results of the simulations utilizing the ANN-EMMS followed by those of the conventional EMMS are the closest to published experimental data for the pressure profile in the reactor, while the ilmenite conversion as predicted by both models is in good agreement with published numerical data.</description><subject>Artificial Neural Network</subject><subject>CFD</subject><subject>Chemical Looping Combustion</subject><subject>EMMS</subject><subject>Fluidized Beds</subject><issn>0009-2509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURj2ARCk8AJtfIMF2_hwxoVJ-pFYMwGw59nXr4sSVnRTBwquTUGamT3c4R1cHoStKUkpoeb1LFcSUEZallNaMlydoRgipE1aQ-gydx7gbz6qiZIa-7-AAzu9b6HrsDZYdlqG3xiorHe5gCL_Tf_jwjpfr9QvWQW5w6zU4bHzA_RZwtO3gZG99NymMG6y2X6BxAzpi22G1hdaqUeS839tug5VvmyFOwAU6NdJFuPzbOXq7X74uHpPV88PT4naVKFZXfZJlHGQFjOScgKl5bmjJitzkNZdcldAUhlJeKFpy0FoWksmSNLTRBXBTMJ7NET16VfAxBjBiH2wrw6egREzVxE6M1cRUTRyrjczNkYHxsYOFIKKy0CnQNoDqhfb2H_oH0ZR5jA</recordid><startdate>20231205</startdate><enddate>20231205</enddate><creator>Stamatopoulos, P.</creator><creator>Stefanitsis, D.</creator><creator>Zeneli, M.</creator><creator>Nikolopoulos, N.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7875-7025</orcidid><orcidid>https://orcid.org/0000-0002-2465-4805</orcidid><orcidid>https://orcid.org/0000-0002-5550-456X</orcidid></search><sort><creationdate>20231205</creationdate><title>Development of an artificial neural network EMMS drag model for the simulation of fluidized beds in chemical looping combustion</title><author>Stamatopoulos, P. ; Stefanitsis, D. ; Zeneli, M. ; Nikolopoulos, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-338ea7e20480ef984f16254f498a8c6eb5f1185c168edda5a2a60b1bd5e8f5283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Neural Network</topic><topic>CFD</topic><topic>Chemical Looping Combustion</topic><topic>EMMS</topic><topic>Fluidized Beds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stamatopoulos, P.</creatorcontrib><creatorcontrib>Stefanitsis, D.</creatorcontrib><creatorcontrib>Zeneli, M.</creatorcontrib><creatorcontrib>Nikolopoulos, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stamatopoulos, P.</au><au>Stefanitsis, D.</au><au>Zeneli, M.</au><au>Nikolopoulos, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an artificial neural network EMMS drag model for the simulation of fluidized beds in chemical looping combustion</atitle><jtitle>Chemical engineering science</jtitle><date>2023-12-05</date><risdate>2023</risdate><volume>282</volume><spage>119286</spage><pages>119286-</pages><artnum>119286</artnum><issn>0009-2509</issn><abstract>[Display omitted] •Development of an Artificial Neural Network EMMS drag model to be applied in fluidized bed simulations of chemical looping combustion.•22 representative cases of CLC processes for the training of the ANN resulting in ∼ 6,350,000 individual data points, after interpolation.•Average mean percentage error of less than 15% between the predictions of the ANN-EMMS and the conventional EMMS.•CFD simulations of a 1 MWth air reactor utilizing the developed ANN-EMMS model as well as three existing drag models.•Comparison of the predicted pressure profile with published experimental and numerical data: ANN-EMMS lies closest to the experimental data (10.1% deviation). The current work presents an Artificial Neural Network EMMS (ANN-EMMS) drag scheme, developed specifically for applications related to fluidized bed (FB) reactors in chemical looping combustion (CLC); the examined particles correspond to the main bed materials encountered in CLC: ilmenite, hematite and titanium oxide. The data that feed the model are generated by a custom-built MATLAB code that solves the EMMS equations. The developed ANN-EMMS model, along with three other drag models, i.e. the Gidaspow, the Wen-Yu and the conventional EMMS, are tested for their performance in CFD simulations for the conditions of the 1 MWth pilot scale FB air reactor of TU Darmstadt. The results of the simulations utilizing the ANN-EMMS followed by those of the conventional EMMS are the closest to published experimental data for the pressure profile in the reactor, while the ilmenite conversion as predicted by both models is in good agreement with published numerical data.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2023.119286</doi><orcidid>https://orcid.org/0000-0002-7875-7025</orcidid><orcidid>https://orcid.org/0000-0002-2465-4805</orcidid><orcidid>https://orcid.org/0000-0002-5550-456X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2023-12, Vol.282, p.119286, Article 119286
issn 0009-2509
language eng
recordid cdi_crossref_primary_10_1016_j_ces_2023_119286
source ScienceDirect Journals
subjects Artificial Neural Network
CFD
Chemical Looping Combustion
EMMS
Fluidized Beds
title Development of an artificial neural network EMMS drag model for the simulation of fluidized beds in chemical looping combustion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20artificial%20neural%20network%20EMMS%20drag%20model%20for%20the%20simulation%20of%20fluidized%20beds%20in%20chemical%20looping%20combustion&rft.jtitle=Chemical%20engineering%20science&rft.au=Stamatopoulos,%20P.&rft.date=2023-12-05&rft.volume=282&rft.spage=119286&rft.pages=119286-&rft.artnum=119286&rft.issn=0009-2509&rft_id=info:doi/10.1016/j.ces.2023.119286&rft_dat=%3Celsevier_cross%3ES0009250923008424%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-338ea7e20480ef984f16254f498a8c6eb5f1185c168edda5a2a60b1bd5e8f5283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true