Loading…
Order to chaos transition studies in a DC glow discharge plasma by using recurrence quantification analysis
Recurrence quantification analysis (RQA) is used to study dynamical systems and to identify the underlying physics when a system exhibits a transition due to changes in some control parameter. The tendency of reoccurrence of different states after certain interval reflects and reveals the hidden pat...
Saved in:
Published in: | Chaos, solitons and fractals solitons and fractals, 2014-12, Vol.69, p.285-293 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recurrence quantification analysis (RQA) is used to study dynamical systems and to identify the underlying physics when a system exhibits a transition due to changes in some control parameter. The tendency of reoccurrence of different states after certain interval reflects and reveals the hidden patterns of a complex time series data. The present work involves the study of the floating potential fluctuations of a glow discharge plasma obtained by using a Langmuir probe. Determinism, entropy and Lmax are important measures of RQA that show an increasing and decreasing trend with variation in the values of discharge voltages and indicate an order-chaos transition in the dynamics of the fluctuations. Statistical analysis techniques represented by skewness and kurtosis are also supportive of a similar phenomenon occurring in the system. |
---|---|
ISSN: | 0960-0779 1873-2887 |
DOI: | 10.1016/j.chaos.2014.10.005 |