Loading…
Multifractal characterization of cerebrovascular dynamics in newborn rats
In this paper we study the cerebrovascular dynamics in newborn rats using the wavelet-based multifractal formalism in order to reveal effective markers of early pathological changes in the macro- and microcirculation at the hidden stage of the development of intracranial hemorrhage (ICH). We demonst...
Saved in:
Published in: | Chaos, solitons and fractals solitons and fractals, 2015-08, Vol.77, p.6-10 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we study the cerebrovascular dynamics in newborn rats using the wavelet-based multifractal formalism in order to reveal effective markers of early pathological changes in the macro- and microcirculation at the hidden stage of the development of intracranial hemorrhage (ICH). We demonstrate that the singularity spectrum estimated with the wavelet-transform modulus maxima (WTMM) technique allows clear characterization of a reduced complexity of blood flow dynamics and changes of the correlation properties at the transformation of normal physiological processes into pathological dynamics that are essentially different at the level of large and small blood vessels. |
---|---|
ISSN: | 0960-0779 1873-2887 |
DOI: | 10.1016/j.chaos.2015.04.011 |