Loading…

Lyapunov functions for fractional-order systems in biology: Methods and applications

•New estimates for fractional Caputo derivatives.•General Lyapunov functions for fractional-order systems.•Global dynamics and stability of fractional epidemic systems.•Fractional population and cellular HIV models.•Real world applications in biology and medicine. We prove new estimates of the Caput...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals solitons and fractals, 2020-11, Vol.140, p.110224, Article 110224
Main Authors: Boukhouima, Adnane, Hattaf, Khalid, Lotfi, El Mehdi, Mahrouf, Marouane, Torres, Delfim F.M., Yousfi, Noura
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c329t-d27e30edfb68647a2f23345fab47db574a0ceb7af0aa8afd0d586a23a5849293
cites cdi_FETCH-LOGICAL-c329t-d27e30edfb68647a2f23345fab47db574a0ceb7af0aa8afd0d586a23a5849293
container_end_page
container_issue
container_start_page 110224
container_title Chaos, solitons and fractals
container_volume 140
creator Boukhouima, Adnane
Hattaf, Khalid
Lotfi, El Mehdi
Mahrouf, Marouane
Torres, Delfim F.M.
Yousfi, Noura
description •New estimates for fractional Caputo derivatives.•General Lyapunov functions for fractional-order systems.•Global dynamics and stability of fractional epidemic systems.•Fractional population and cellular HIV models.•Real world applications in biology and medicine. We prove new estimates of the Caputo derivative of order α ∈ (0, 1] for some specific functions. The estimations are shown useful to construct Lyapunov functions for systems of fractional differential equations in biology, based on those known for ordinary differential equations, and therefore useful to determine the global stability of the equilibrium points for fractional systems. To illustrate the usefulness of our theoretical results, a fractional HIV population model and a fractional cellular model are studied. More precisely, we construct suitable Lyapunov functionals to demonstrate the global stability of the free and endemic equilibriums, for both fractional models, and we also perform some numerical simulations that confirm our choices.
doi_str_mv 10.1016/j.chaos.2020.110224
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2020_110224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077920306202</els_id><sourcerecordid>S0960077920306202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-d27e30edfb68647a2f23345fab47db574a0ceb7af0aa8afd0d586a23a5849293</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKtP4CYvMPUmmZlkBBdS_IOKm-7DnfzYlOlkSKaFeXtr69rV5Vz4DoePkHsGCwasftguzAZjXnDgxw8DzssLMmNKioIrJS_JDJoaCpCyuSY3OW8BgEHNZ2S9mnDY9_FA_b43Y4h9pj4m6hOeEnZFTNYlmqc8ul2moadtiF38nh7ppxs30WaKvaU4DF0weGq4JVceu-zu_u6crF9f1sv3YvX19rF8XhVG8GYsLJdOgLO-rVVdSuSeC1FWHttS2raSJYJxrUQPiAq9BVupGrnASpUNb8SciHOtSTHn5LweUthhmjQD_etFb_XJi_71os9ejtTTmXLHZYfgks4muN44G5Izo7Yx_Mv_AEmcbs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lyapunov functions for fractional-order systems in biology: Methods and applications</title><source>ScienceDirect Freedom Collection</source><creator>Boukhouima, Adnane ; Hattaf, Khalid ; Lotfi, El Mehdi ; Mahrouf, Marouane ; Torres, Delfim F.M. ; Yousfi, Noura</creator><creatorcontrib>Boukhouima, Adnane ; Hattaf, Khalid ; Lotfi, El Mehdi ; Mahrouf, Marouane ; Torres, Delfim F.M. ; Yousfi, Noura</creatorcontrib><description>•New estimates for fractional Caputo derivatives.•General Lyapunov functions for fractional-order systems.•Global dynamics and stability of fractional epidemic systems.•Fractional population and cellular HIV models.•Real world applications in biology and medicine. We prove new estimates of the Caputo derivative of order α ∈ (0, 1] for some specific functions. The estimations are shown useful to construct Lyapunov functions for systems of fractional differential equations in biology, based on those known for ordinary differential equations, and therefore useful to determine the global stability of the equilibrium points for fractional systems. To illustrate the usefulness of our theoretical results, a fractional HIV population model and a fractional cellular model are studied. More precisely, we construct suitable Lyapunov functionals to demonstrate the global stability of the free and endemic equilibriums, for both fractional models, and we also perform some numerical simulations that confirm our choices.</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2020.110224</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Caputo derivatives ; Fractional calculus ; Lyapunov analysis ; Mathematical biology ; Nonlinear ordinary differential equations ; Stability</subject><ispartof>Chaos, solitons and fractals, 2020-11, Vol.140, p.110224, Article 110224</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-d27e30edfb68647a2f23345fab47db574a0ceb7af0aa8afd0d586a23a5849293</citedby><cites>FETCH-LOGICAL-c329t-d27e30edfb68647a2f23345fab47db574a0ceb7af0aa8afd0d586a23a5849293</cites><orcidid>0000-0003-4488-2191 ; 0000-0001-8641-2505 ; 0000-0002-5032-3639 ; 0000-0002-3604-3841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Boukhouima, Adnane</creatorcontrib><creatorcontrib>Hattaf, Khalid</creatorcontrib><creatorcontrib>Lotfi, El Mehdi</creatorcontrib><creatorcontrib>Mahrouf, Marouane</creatorcontrib><creatorcontrib>Torres, Delfim F.M.</creatorcontrib><creatorcontrib>Yousfi, Noura</creatorcontrib><title>Lyapunov functions for fractional-order systems in biology: Methods and applications</title><title>Chaos, solitons and fractals</title><description>•New estimates for fractional Caputo derivatives.•General Lyapunov functions for fractional-order systems.•Global dynamics and stability of fractional epidemic systems.•Fractional population and cellular HIV models.•Real world applications in biology and medicine. We prove new estimates of the Caputo derivative of order α ∈ (0, 1] for some specific functions. The estimations are shown useful to construct Lyapunov functions for systems of fractional differential equations in biology, based on those known for ordinary differential equations, and therefore useful to determine the global stability of the equilibrium points for fractional systems. To illustrate the usefulness of our theoretical results, a fractional HIV population model and a fractional cellular model are studied. More precisely, we construct suitable Lyapunov functionals to demonstrate the global stability of the free and endemic equilibriums, for both fractional models, and we also perform some numerical simulations that confirm our choices.</description><subject>Caputo derivatives</subject><subject>Fractional calculus</subject><subject>Lyapunov analysis</subject><subject>Mathematical biology</subject><subject>Nonlinear ordinary differential equations</subject><subject>Stability</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKtP4CYvMPUmmZlkBBdS_IOKm-7DnfzYlOlkSKaFeXtr69rV5Vz4DoePkHsGCwasftguzAZjXnDgxw8DzssLMmNKioIrJS_JDJoaCpCyuSY3OW8BgEHNZ2S9mnDY9_FA_b43Y4h9pj4m6hOeEnZFTNYlmqc8ul2moadtiF38nh7ppxs30WaKvaU4DF0weGq4JVceu-zu_u6crF9f1sv3YvX19rF8XhVG8GYsLJdOgLO-rVVdSuSeC1FWHttS2raSJYJxrUQPiAq9BVupGrnASpUNb8SciHOtSTHn5LweUthhmjQD_etFb_XJi_71os9ejtTTmXLHZYfgks4muN44G5Izo7Yx_Mv_AEmcbs4</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Boukhouima, Adnane</creator><creator>Hattaf, Khalid</creator><creator>Lotfi, El Mehdi</creator><creator>Mahrouf, Marouane</creator><creator>Torres, Delfim F.M.</creator><creator>Yousfi, Noura</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4488-2191</orcidid><orcidid>https://orcid.org/0000-0001-8641-2505</orcidid><orcidid>https://orcid.org/0000-0002-5032-3639</orcidid><orcidid>https://orcid.org/0000-0002-3604-3841</orcidid></search><sort><creationdate>202011</creationdate><title>Lyapunov functions for fractional-order systems in biology: Methods and applications</title><author>Boukhouima, Adnane ; Hattaf, Khalid ; Lotfi, El Mehdi ; Mahrouf, Marouane ; Torres, Delfim F.M. ; Yousfi, Noura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-d27e30edfb68647a2f23345fab47db574a0ceb7af0aa8afd0d586a23a5849293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Caputo derivatives</topic><topic>Fractional calculus</topic><topic>Lyapunov analysis</topic><topic>Mathematical biology</topic><topic>Nonlinear ordinary differential equations</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boukhouima, Adnane</creatorcontrib><creatorcontrib>Hattaf, Khalid</creatorcontrib><creatorcontrib>Lotfi, El Mehdi</creatorcontrib><creatorcontrib>Mahrouf, Marouane</creatorcontrib><creatorcontrib>Torres, Delfim F.M.</creatorcontrib><creatorcontrib>Yousfi, Noura</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boukhouima, Adnane</au><au>Hattaf, Khalid</au><au>Lotfi, El Mehdi</au><au>Mahrouf, Marouane</au><au>Torres, Delfim F.M.</au><au>Yousfi, Noura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov functions for fractional-order systems in biology: Methods and applications</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2020-11</date><risdate>2020</risdate><volume>140</volume><spage>110224</spage><pages>110224-</pages><artnum>110224</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>•New estimates for fractional Caputo derivatives.•General Lyapunov functions for fractional-order systems.•Global dynamics and stability of fractional epidemic systems.•Fractional population and cellular HIV models.•Real world applications in biology and medicine. We prove new estimates of the Caputo derivative of order α ∈ (0, 1] for some specific functions. The estimations are shown useful to construct Lyapunov functions for systems of fractional differential equations in biology, based on those known for ordinary differential equations, and therefore useful to determine the global stability of the equilibrium points for fractional systems. To illustrate the usefulness of our theoretical results, a fractional HIV population model and a fractional cellular model are studied. More precisely, we construct suitable Lyapunov functionals to demonstrate the global stability of the free and endemic equilibriums, for both fractional models, and we also perform some numerical simulations that confirm our choices.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2020.110224</doi><orcidid>https://orcid.org/0000-0003-4488-2191</orcidid><orcidid>https://orcid.org/0000-0001-8641-2505</orcidid><orcidid>https://orcid.org/0000-0002-5032-3639</orcidid><orcidid>https://orcid.org/0000-0002-3604-3841</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-0779
ispartof Chaos, solitons and fractals, 2020-11, Vol.140, p.110224, Article 110224
issn 0960-0779
1873-2887
language eng
recordid cdi_crossref_primary_10_1016_j_chaos_2020_110224
source ScienceDirect Freedom Collection
subjects Caputo derivatives
Fractional calculus
Lyapunov analysis
Mathematical biology
Nonlinear ordinary differential equations
Stability
title Lyapunov functions for fractional-order systems in biology: Methods and applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov%20functions%20for%20fractional-order%20systems%20in%20biology:%20Methods%20and%20applications&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Boukhouima,%20Adnane&rft.date=2020-11&rft.volume=140&rft.spage=110224&rft.pages=110224-&rft.artnum=110224&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2020.110224&rft_dat=%3Celsevier_cross%3ES0960077920306202%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-d27e30edfb68647a2f23345fab47db574a0ceb7af0aa8afd0d586a23a5849293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true