Loading…
Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model
In this article, a mathematical model split into different compartments of population describing the transmission of fascioliasis in humans, domestic animals and environmental sources under the Caputo fractional derivative is presented. Analytical results involving the existence and uniqueness of, a...
Saved in:
Published in: | Chaos, solitons and fractals solitons and fractals, 2021-05, Vol.146, p.110851, Article 110851 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c303t-73c978b7d272f134a7505a063df847f1b4d150d4232a18b29556040b06e441da3 |
---|---|
cites | cdi_FETCH-LOGICAL-c303t-73c978b7d272f134a7505a063df847f1b4d150d4232a18b29556040b06e441da3 |
container_end_page | |
container_issue | |
container_start_page | 110851 |
container_title | Chaos, solitons and fractals |
container_volume | 146 |
creator | Ogunmiloro, Oluwatayo Michael |
description | In this article, a mathematical model split into different compartments of population describing the transmission of fascioliasis in humans, domestic animals and environmental sources under the Caputo fractional derivative is presented. Analytical results involving the existence and uniqueness of, at least a solution of the model through fixed point approach is established. The basic reproduction number (Rfc) is obtained using the next generation matrix method and the fascioliasis - free and endemic equilibrium is obtained to show that the fascioliasis - free equilibrium is locally and globally asymptotically stable whenever Rfc is less than unity. The numerical modified Euler method for the fractional order Caputo fascioliasis model is utilized, and the simulations show that the method is efficient and convergent. |
doi_str_mv | 10.1016/j.chaos.2021.110851 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2021_110851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077921002046</els_id><sourcerecordid>S0960077921002046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-73c978b7d272f134a7505a063df847f1b4d150d4232a18b29556040b06e441da3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWz8AwljO4mdBQtU8ZKK2MDamvihukrryE4R_XsSyprVzGh0RnMPIbcMSgasuduWZoMxlxw4KxkDVbMzsmBKioIrJc_JAtoGCpCyvSRXOW8BgEHDF8S_4bhxOxyDwZ7iHvtjDnlqLMVhSPE7TDtHc-wPY4h7Gj1F6hOaeZqImKxL1OBwGCP1mE2IfcD5hA3ZYXZ0F63rr8mFxz67m7-6JJ9Pjx-rl2L9_vy6elgXRoAYCylMK1UnLZfcM1GhrKFGaIT1qpKedZVlNdiKC45Mdbyt6wYq6KBxVcUsiiURp7smxZyT83pIU4J01Az0rEpv9a8qPavSJ1UTdX-i3PTaV3BJTznc3jgbkjOjtjH8y_8A-OR0IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model</title><source>Elsevier</source><creator>Ogunmiloro, Oluwatayo Michael</creator><creatorcontrib>Ogunmiloro, Oluwatayo Michael</creatorcontrib><description>In this article, a mathematical model split into different compartments of population describing the transmission of fascioliasis in humans, domestic animals and environmental sources under the Caputo fractional derivative is presented. Analytical results involving the existence and uniqueness of, at least a solution of the model through fixed point approach is established. The basic reproduction number (Rfc) is obtained using the next generation matrix method and the fascioliasis - free and endemic equilibrium is obtained to show that the fascioliasis - free equilibrium is locally and globally asymptotically stable whenever Rfc is less than unity. The numerical modified Euler method for the fractional order Caputo fascioliasis model is utilized, and the simulations show that the method is efficient and convergent.</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2021.110851</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Basic reproduction number [formula omitted] ; Euler method ; Existence and uniqueness ; Stability analysis</subject><ispartof>Chaos, solitons and fractals, 2021-05, Vol.146, p.110851, Article 110851</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-73c978b7d272f134a7505a063df847f1b4d150d4232a18b29556040b06e441da3</citedby><cites>FETCH-LOGICAL-c303t-73c978b7d272f134a7505a063df847f1b4d150d4232a18b29556040b06e441da3</cites><orcidid>0000-0002-0800-3690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ogunmiloro, Oluwatayo Michael</creatorcontrib><title>Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model</title><title>Chaos, solitons and fractals</title><description>In this article, a mathematical model split into different compartments of population describing the transmission of fascioliasis in humans, domestic animals and environmental sources under the Caputo fractional derivative is presented. Analytical results involving the existence and uniqueness of, at least a solution of the model through fixed point approach is established. The basic reproduction number (Rfc) is obtained using the next generation matrix method and the fascioliasis - free and endemic equilibrium is obtained to show that the fascioliasis - free equilibrium is locally and globally asymptotically stable whenever Rfc is less than unity. The numerical modified Euler method for the fractional order Caputo fascioliasis model is utilized, and the simulations show that the method is efficient and convergent.</description><subject>Basic reproduction number [formula omitted]</subject><subject>Euler method</subject><subject>Existence and uniqueness</subject><subject>Stability analysis</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWz8AwljO4mdBQtU8ZKK2MDamvihukrryE4R_XsSyprVzGh0RnMPIbcMSgasuduWZoMxlxw4KxkDVbMzsmBKioIrJc_JAtoGCpCyvSRXOW8BgEHDF8S_4bhxOxyDwZ7iHvtjDnlqLMVhSPE7TDtHc-wPY4h7Gj1F6hOaeZqImKxL1OBwGCP1mE2IfcD5hA3ZYXZ0F63rr8mFxz67m7-6JJ9Pjx-rl2L9_vy6elgXRoAYCylMK1UnLZfcM1GhrKFGaIT1qpKedZVlNdiKC45Mdbyt6wYq6KBxVcUsiiURp7smxZyT83pIU4J01Az0rEpv9a8qPavSJ1UTdX-i3PTaV3BJTznc3jgbkjOjtjH8y_8A-OR0IA</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Ogunmiloro, Oluwatayo Michael</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0800-3690</orcidid></search><sort><creationdate>202105</creationdate><title>Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model</title><author>Ogunmiloro, Oluwatayo Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-73c978b7d272f134a7505a063df847f1b4d150d4232a18b29556040b06e441da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Basic reproduction number [formula omitted]</topic><topic>Euler method</topic><topic>Existence and uniqueness</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogunmiloro, Oluwatayo Michael</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogunmiloro, Oluwatayo Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2021-05</date><risdate>2021</risdate><volume>146</volume><spage>110851</spage><pages>110851-</pages><artnum>110851</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>In this article, a mathematical model split into different compartments of population describing the transmission of fascioliasis in humans, domestic animals and environmental sources under the Caputo fractional derivative is presented. Analytical results involving the existence and uniqueness of, at least a solution of the model through fixed point approach is established. The basic reproduction number (Rfc) is obtained using the next generation matrix method and the fascioliasis - free and endemic equilibrium is obtained to show that the fascioliasis - free equilibrium is locally and globally asymptotically stable whenever Rfc is less than unity. The numerical modified Euler method for the fractional order Caputo fascioliasis model is utilized, and the simulations show that the method is efficient and convergent.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2021.110851</doi><orcidid>https://orcid.org/0000-0002-0800-3690</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-0779 |
ispartof | Chaos, solitons and fractals, 2021-05, Vol.146, p.110851, Article 110851 |
issn | 0960-0779 1873-2887 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_chaos_2021_110851 |
source | Elsevier |
subjects | Basic reproduction number [formula omitted] Euler method Existence and uniqueness Stability analysis |
title | Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20analysis%20and%20approximate%20solution%20of%20a%20fractional%20order%20caputo%20fascioliasis%20disease%20model&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Ogunmiloro,%20Oluwatayo%20Michael&rft.date=2021-05&rft.volume=146&rft.spage=110851&rft.pages=110851-&rft.artnum=110851&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2021.110851&rft_dat=%3Celsevier_cross%3ES0960077921002046%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-73c978b7d272f134a7505a063df847f1b4d150d4232a18b29556040b06e441da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |