Loading…

Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model

In this article, a mathematical model split into different compartments of population describing the transmission of fascioliasis in humans, domestic animals and environmental sources under the Caputo fractional derivative is presented. Analytical results involving the existence and uniqueness of, a...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals solitons and fractals, 2021-05, Vol.146, p.110851, Article 110851
Main Author: Ogunmiloro, Oluwatayo Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-73c978b7d272f134a7505a063df847f1b4d150d4232a18b29556040b06e441da3
cites cdi_FETCH-LOGICAL-c303t-73c978b7d272f134a7505a063df847f1b4d150d4232a18b29556040b06e441da3
container_end_page
container_issue
container_start_page 110851
container_title Chaos, solitons and fractals
container_volume 146
creator Ogunmiloro, Oluwatayo Michael
description In this article, a mathematical model split into different compartments of population describing the transmission of fascioliasis in humans, domestic animals and environmental sources under the Caputo fractional derivative is presented. Analytical results involving the existence and uniqueness of, at least a solution of the model through fixed point approach is established. The basic reproduction number (Rfc) is obtained using the next generation matrix method and the fascioliasis - free and endemic equilibrium is obtained to show that the fascioliasis - free equilibrium is locally and globally asymptotically stable whenever Rfc is less than unity. The numerical modified Euler method for the fractional order Caputo fascioliasis model is utilized, and the simulations show that the method is efficient and convergent.
doi_str_mv 10.1016/j.chaos.2021.110851
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2021_110851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077921002046</els_id><sourcerecordid>S0960077921002046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-73c978b7d272f134a7505a063df847f1b4d150d4232a18b29556040b06e441da3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWz8AwljO4mdBQtU8ZKK2MDamvihukrryE4R_XsSyprVzGh0RnMPIbcMSgasuduWZoMxlxw4KxkDVbMzsmBKioIrJc_JAtoGCpCyvSRXOW8BgEHDF8S_4bhxOxyDwZ7iHvtjDnlqLMVhSPE7TDtHc-wPY4h7Gj1F6hOaeZqImKxL1OBwGCP1mE2IfcD5hA3ZYXZ0F63rr8mFxz67m7-6JJ9Pjx-rl2L9_vy6elgXRoAYCylMK1UnLZfcM1GhrKFGaIT1qpKedZVlNdiKC45Mdbyt6wYq6KBxVcUsiiURp7smxZyT83pIU4J01Az0rEpv9a8qPavSJ1UTdX-i3PTaV3BJTznc3jgbkjOjtjH8y_8A-OR0IA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model</title><source>Elsevier</source><creator>Ogunmiloro, Oluwatayo Michael</creator><creatorcontrib>Ogunmiloro, Oluwatayo Michael</creatorcontrib><description>In this article, a mathematical model split into different compartments of population describing the transmission of fascioliasis in humans, domestic animals and environmental sources under the Caputo fractional derivative is presented. Analytical results involving the existence and uniqueness of, at least a solution of the model through fixed point approach is established. The basic reproduction number (Rfc) is obtained using the next generation matrix method and the fascioliasis - free and endemic equilibrium is obtained to show that the fascioliasis - free equilibrium is locally and globally asymptotically stable whenever Rfc is less than unity. The numerical modified Euler method for the fractional order Caputo fascioliasis model is utilized, and the simulations show that the method is efficient and convergent.</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2021.110851</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Basic reproduction number [formula omitted] ; Euler method ; Existence and uniqueness ; Stability analysis</subject><ispartof>Chaos, solitons and fractals, 2021-05, Vol.146, p.110851, Article 110851</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-73c978b7d272f134a7505a063df847f1b4d150d4232a18b29556040b06e441da3</citedby><cites>FETCH-LOGICAL-c303t-73c978b7d272f134a7505a063df847f1b4d150d4232a18b29556040b06e441da3</cites><orcidid>0000-0002-0800-3690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ogunmiloro, Oluwatayo Michael</creatorcontrib><title>Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model</title><title>Chaos, solitons and fractals</title><description>In this article, a mathematical model split into different compartments of population describing the transmission of fascioliasis in humans, domestic animals and environmental sources under the Caputo fractional derivative is presented. Analytical results involving the existence and uniqueness of, at least a solution of the model through fixed point approach is established. The basic reproduction number (Rfc) is obtained using the next generation matrix method and the fascioliasis - free and endemic equilibrium is obtained to show that the fascioliasis - free equilibrium is locally and globally asymptotically stable whenever Rfc is less than unity. The numerical modified Euler method for the fractional order Caputo fascioliasis model is utilized, and the simulations show that the method is efficient and convergent.</description><subject>Basic reproduction number [formula omitted]</subject><subject>Euler method</subject><subject>Existence and uniqueness</subject><subject>Stability analysis</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWz8AwljO4mdBQtU8ZKK2MDamvihukrryE4R_XsSyprVzGh0RnMPIbcMSgasuduWZoMxlxw4KxkDVbMzsmBKioIrJc_JAtoGCpCyvSRXOW8BgEHDF8S_4bhxOxyDwZ7iHvtjDnlqLMVhSPE7TDtHc-wPY4h7Gj1F6hOaeZqImKxL1OBwGCP1mE2IfcD5hA3ZYXZ0F63rr8mFxz67m7-6JJ9Pjx-rl2L9_vy6elgXRoAYCylMK1UnLZfcM1GhrKFGaIT1qpKedZVlNdiKC45Mdbyt6wYq6KBxVcUsiiURp7smxZyT83pIU4J01Az0rEpv9a8qPavSJ1UTdX-i3PTaV3BJTznc3jgbkjOjtjH8y_8A-OR0IA</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Ogunmiloro, Oluwatayo Michael</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0800-3690</orcidid></search><sort><creationdate>202105</creationdate><title>Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model</title><author>Ogunmiloro, Oluwatayo Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-73c978b7d272f134a7505a063df847f1b4d150d4232a18b29556040b06e441da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Basic reproduction number [formula omitted]</topic><topic>Euler method</topic><topic>Existence and uniqueness</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogunmiloro, Oluwatayo Michael</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogunmiloro, Oluwatayo Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2021-05</date><risdate>2021</risdate><volume>146</volume><spage>110851</spage><pages>110851-</pages><artnum>110851</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>In this article, a mathematical model split into different compartments of population describing the transmission of fascioliasis in humans, domestic animals and environmental sources under the Caputo fractional derivative is presented. Analytical results involving the existence and uniqueness of, at least a solution of the model through fixed point approach is established. The basic reproduction number (Rfc) is obtained using the next generation matrix method and the fascioliasis - free and endemic equilibrium is obtained to show that the fascioliasis - free equilibrium is locally and globally asymptotically stable whenever Rfc is less than unity. The numerical modified Euler method for the fractional order Caputo fascioliasis model is utilized, and the simulations show that the method is efficient and convergent.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2021.110851</doi><orcidid>https://orcid.org/0000-0002-0800-3690</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-0779
ispartof Chaos, solitons and fractals, 2021-05, Vol.146, p.110851, Article 110851
issn 0960-0779
1873-2887
language eng
recordid cdi_crossref_primary_10_1016_j_chaos_2021_110851
source Elsevier
subjects Basic reproduction number [formula omitted]
Euler method
Existence and uniqueness
Stability analysis
title Mathematical analysis and approximate solution of a fractional order caputo fascioliasis disease model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20analysis%20and%20approximate%20solution%20of%20a%20fractional%20order%20caputo%20fascioliasis%20disease%20model&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Ogunmiloro,%20Oluwatayo%20Michael&rft.date=2021-05&rft.volume=146&rft.spage=110851&rft.pages=110851-&rft.artnum=110851&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2021.110851&rft_dat=%3Celsevier_cross%3ES0960077921002046%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-73c978b7d272f134a7505a063df847f1b4d150d4232a18b29556040b06e441da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true