Loading…
Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances
•We design the disturbance rejection controllers for three classes of fractional heat equations.•Boundary control strategies achieve the power law type stabilization and the asymptotical stabilization for fractional heat e quations without and with time delay, respectively.•Compared with the existin...
Saved in:
Published in: | Chaos, solitons and fractals solitons and fractals, 2021-05, Vol.146, p.110886, Article 110886 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c303t-dd6dea61cfb65221913634fca59ba0287eb1bf87587446bcdce0d97ed73b7e463 |
---|---|
cites | cdi_FETCH-LOGICAL-c303t-dd6dea61cfb65221913634fca59ba0287eb1bf87587446bcdce0d97ed73b7e463 |
container_end_page | |
container_issue | |
container_start_page | 110886 |
container_title | Chaos, solitons and fractals |
container_volume | 146 |
creator | Cai, Rui-Yang Zhou, Hua-Cheng Kou, Chun-Hai |
description | •We design the disturbance rejection controllers for three classes of fractional heat equations.•Boundary control strategies achieve the power law type stabilization and the asymptotical stabilization for fractional heat e quations without and with time delay, respectively.•Compared with the existing control law for the same fractional heat e quations the control design introduced here is much simple.
This work aims to design the disturbance rejection controllers for three classes of fractional heat equations. Based on Filippov’s theory, the existence conclusion for the partial differential inclusion solution (PDIS) is established for fractional heat equations with discontinuous boundary conditions. Boundary control strategies are designed directly without the use of any robust control method to respectively achieve the power-law type stabilization and the asymptotical stabilization for fractional heat equations without and with time delay, respectively. A numerical example is included to illustrate the obtained results. |
doi_str_mv | 10.1016/j.chaos.2021.110886 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2021_110886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077921002393</els_id><sourcerecordid>S0960077921002393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-dd6dea61cfb65221913634fca59ba0287eb1bf87587446bcdce0d97ed73b7e463</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhYnRxFp9Aje8wNTLMAVm4UIb_xITN7omDFwcajsoUE3f3qnVraubs_hOzv0IOWcwY8DExXJmexPzrIaazRgDpcQBmTAleVUrJQ_JBFoBFUjZHpOTnJcAwEDUE9Jfx83gTNpSG4eS4ormkkzB1y31MdHSJ0T6FgaXafTUJ2NLiINZ0R5NofixMbuc6Vco_V9FtTbF9uioC7lsUmcGi_mUHHmzynj2e6fk5fbmeXFfPT7dPSyuHivLgZfKOeHQCGZ9J-Z1zVrGBW-8NfO2M1AriR3rvJJzJZtGdNZZBNdKdJJ3EhvBp4Tve22KOSf0-j2F9figZqB3svRS_8jSO1l6L2ukLvcUjtM-AyadbcBxtwsJbdEuhn_5b1wudwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances</title><source>ScienceDirect Freedom Collection</source><creator>Cai, Rui-Yang ; Zhou, Hua-Cheng ; Kou, Chun-Hai</creator><creatorcontrib>Cai, Rui-Yang ; Zhou, Hua-Cheng ; Kou, Chun-Hai</creatorcontrib><description>•We design the disturbance rejection controllers for three classes of fractional heat equations.•Boundary control strategies achieve the power law type stabilization and the asymptotical stabilization for fractional heat e quations without and with time delay, respectively.•Compared with the existing control law for the same fractional heat e quations the control design introduced here is much simple.
This work aims to design the disturbance rejection controllers for three classes of fractional heat equations. Based on Filippov’s theory, the existence conclusion for the partial differential inclusion solution (PDIS) is established for fractional heat equations with discontinuous boundary conditions. Boundary control strategies are designed directly without the use of any robust control method to respectively achieve the power-law type stabilization and the asymptotical stabilization for fractional heat equations without and with time delay, respectively. A numerical example is included to illustrate the obtained results.</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2021.110886</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Disturbance rejection control design ; Fractional heat equations with delay ; Partial differential inclusion solution ; Stabilization</subject><ispartof>Chaos, solitons and fractals, 2021-05, Vol.146, p.110886, Article 110886</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-dd6dea61cfb65221913634fca59ba0287eb1bf87587446bcdce0d97ed73b7e463</citedby><cites>FETCH-LOGICAL-c303t-dd6dea61cfb65221913634fca59ba0287eb1bf87587446bcdce0d97ed73b7e463</cites><orcidid>0000-0001-6856-2358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cai, Rui-Yang</creatorcontrib><creatorcontrib>Zhou, Hua-Cheng</creatorcontrib><creatorcontrib>Kou, Chun-Hai</creatorcontrib><title>Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances</title><title>Chaos, solitons and fractals</title><description>•We design the disturbance rejection controllers for three classes of fractional heat equations.•Boundary control strategies achieve the power law type stabilization and the asymptotical stabilization for fractional heat e quations without and with time delay, respectively.•Compared with the existing control law for the same fractional heat e quations the control design introduced here is much simple.
This work aims to design the disturbance rejection controllers for three classes of fractional heat equations. Based on Filippov’s theory, the existence conclusion for the partial differential inclusion solution (PDIS) is established for fractional heat equations with discontinuous boundary conditions. Boundary control strategies are designed directly without the use of any robust control method to respectively achieve the power-law type stabilization and the asymptotical stabilization for fractional heat equations without and with time delay, respectively. A numerical example is included to illustrate the obtained results.</description><subject>Disturbance rejection control design</subject><subject>Fractional heat equations with delay</subject><subject>Partial differential inclusion solution</subject><subject>Stabilization</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEUhYnRxFp9Aje8wNTLMAVm4UIb_xITN7omDFwcajsoUE3f3qnVraubs_hOzv0IOWcwY8DExXJmexPzrIaazRgDpcQBmTAleVUrJQ_JBFoBFUjZHpOTnJcAwEDUE9Jfx83gTNpSG4eS4ormkkzB1y31MdHSJ0T6FgaXafTUJ2NLiINZ0R5NofixMbuc6Vco_V9FtTbF9uioC7lsUmcGi_mUHHmzynj2e6fk5fbmeXFfPT7dPSyuHivLgZfKOeHQCGZ9J-Z1zVrGBW-8NfO2M1AriR3rvJJzJZtGdNZZBNdKdJJ3EhvBp4Tve22KOSf0-j2F9figZqB3svRS_8jSO1l6L2ukLvcUjtM-AyadbcBxtwsJbdEuhn_5b1wudwM</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Cai, Rui-Yang</creator><creator>Zhou, Hua-Cheng</creator><creator>Kou, Chun-Hai</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6856-2358</orcidid></search><sort><creationdate>202105</creationdate><title>Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances</title><author>Cai, Rui-Yang ; Zhou, Hua-Cheng ; Kou, Chun-Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-dd6dea61cfb65221913634fca59ba0287eb1bf87587446bcdce0d97ed73b7e463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Disturbance rejection control design</topic><topic>Fractional heat equations with delay</topic><topic>Partial differential inclusion solution</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Rui-Yang</creatorcontrib><creatorcontrib>Zhou, Hua-Cheng</creatorcontrib><creatorcontrib>Kou, Chun-Hai</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Rui-Yang</au><au>Zhou, Hua-Cheng</au><au>Kou, Chun-Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2021-05</date><risdate>2021</risdate><volume>146</volume><spage>110886</spage><pages>110886-</pages><artnum>110886</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>•We design the disturbance rejection controllers for three classes of fractional heat equations.•Boundary control strategies achieve the power law type stabilization and the asymptotical stabilization for fractional heat e quations without and with time delay, respectively.•Compared with the existing control law for the same fractional heat e quations the control design introduced here is much simple.
This work aims to design the disturbance rejection controllers for three classes of fractional heat equations. Based on Filippov’s theory, the existence conclusion for the partial differential inclusion solution (PDIS) is established for fractional heat equations with discontinuous boundary conditions. Boundary control strategies are designed directly without the use of any robust control method to respectively achieve the power-law type stabilization and the asymptotical stabilization for fractional heat equations without and with time delay, respectively. A numerical example is included to illustrate the obtained results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2021.110886</doi><orcidid>https://orcid.org/0000-0001-6856-2358</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-0779 |
ispartof | Chaos, solitons and fractals, 2021-05, Vol.146, p.110886, Article 110886 |
issn | 0960-0779 1873-2887 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_chaos_2021_110886 |
source | ScienceDirect Freedom Collection |
subjects | Disturbance rejection control design Fractional heat equations with delay Partial differential inclusion solution Stabilization |
title | Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20control%20strategy%20for%20three%20kinds%20of%20fractional%20heat%20equations%20with%20control-matched%20disturbances&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Cai,%20Rui-Yang&rft.date=2021-05&rft.volume=146&rft.spage=110886&rft.pages=110886-&rft.artnum=110886&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2021.110886&rft_dat=%3Celsevier_cross%3ES0960077921002393%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-dd6dea61cfb65221913634fca59ba0287eb1bf87587446bcdce0d97ed73b7e463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |