Loading…

Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances

•We design the disturbance rejection controllers for three classes of fractional heat equations.•Boundary control strategies achieve the power law type stabilization and the asymptotical stabilization for fractional heat e quations without and with time delay, respectively.•Compared with the existin...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals solitons and fractals, 2021-05, Vol.146, p.110886, Article 110886
Main Authors: Cai, Rui-Yang, Zhou, Hua-Cheng, Kou, Chun-Hai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-dd6dea61cfb65221913634fca59ba0287eb1bf87587446bcdce0d97ed73b7e463
cites cdi_FETCH-LOGICAL-c303t-dd6dea61cfb65221913634fca59ba0287eb1bf87587446bcdce0d97ed73b7e463
container_end_page
container_issue
container_start_page 110886
container_title Chaos, solitons and fractals
container_volume 146
creator Cai, Rui-Yang
Zhou, Hua-Cheng
Kou, Chun-Hai
description •We design the disturbance rejection controllers for three classes of fractional heat equations.•Boundary control strategies achieve the power law type stabilization and the asymptotical stabilization for fractional heat e quations without and with time delay, respectively.•Compared with the existing control law for the same fractional heat e quations the control design introduced here is much simple. This work aims to design the disturbance rejection controllers for three classes of fractional heat equations. Based on Filippov’s theory, the existence conclusion for the partial differential inclusion solution (PDIS) is established for fractional heat equations with discontinuous boundary conditions. Boundary control strategies are designed directly without the use of any robust control method to respectively achieve the power-law type stabilization and the asymptotical stabilization for fractional heat equations without and with time delay, respectively. A numerical example is included to illustrate the obtained results.
doi_str_mv 10.1016/j.chaos.2021.110886
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2021_110886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077921002393</els_id><sourcerecordid>S0960077921002393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-dd6dea61cfb65221913634fca59ba0287eb1bf87587446bcdce0d97ed73b7e463</originalsourceid><addsrcrecordid>eNp9kM1OAyEUhYnRxFp9Aje8wNTLMAVm4UIb_xITN7omDFwcajsoUE3f3qnVraubs_hOzv0IOWcwY8DExXJmexPzrIaazRgDpcQBmTAleVUrJQ_JBFoBFUjZHpOTnJcAwEDUE9Jfx83gTNpSG4eS4ormkkzB1y31MdHSJ0T6FgaXafTUJ2NLiINZ0R5NofixMbuc6Vco_V9FtTbF9uioC7lsUmcGi_mUHHmzynj2e6fk5fbmeXFfPT7dPSyuHivLgZfKOeHQCGZ9J-Z1zVrGBW-8NfO2M1AriR3rvJJzJZtGdNZZBNdKdJJ3EhvBp4Tve22KOSf0-j2F9figZqB3svRS_8jSO1l6L2ukLvcUjtM-AyadbcBxtwsJbdEuhn_5b1wudwM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances</title><source>ScienceDirect Freedom Collection</source><creator>Cai, Rui-Yang ; Zhou, Hua-Cheng ; Kou, Chun-Hai</creator><creatorcontrib>Cai, Rui-Yang ; Zhou, Hua-Cheng ; Kou, Chun-Hai</creatorcontrib><description>•We design the disturbance rejection controllers for three classes of fractional heat equations.•Boundary control strategies achieve the power law type stabilization and the asymptotical stabilization for fractional heat e quations without and with time delay, respectively.•Compared with the existing control law for the same fractional heat e quations the control design introduced here is much simple. This work aims to design the disturbance rejection controllers for three classes of fractional heat equations. Based on Filippov’s theory, the existence conclusion for the partial differential inclusion solution (PDIS) is established for fractional heat equations with discontinuous boundary conditions. Boundary control strategies are designed directly without the use of any robust control method to respectively achieve the power-law type stabilization and the asymptotical stabilization for fractional heat equations without and with time delay, respectively. A numerical example is included to illustrate the obtained results.</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2021.110886</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Disturbance rejection control design ; Fractional heat equations with delay ; Partial differential inclusion solution ; Stabilization</subject><ispartof>Chaos, solitons and fractals, 2021-05, Vol.146, p.110886, Article 110886</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-dd6dea61cfb65221913634fca59ba0287eb1bf87587446bcdce0d97ed73b7e463</citedby><cites>FETCH-LOGICAL-c303t-dd6dea61cfb65221913634fca59ba0287eb1bf87587446bcdce0d97ed73b7e463</cites><orcidid>0000-0001-6856-2358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cai, Rui-Yang</creatorcontrib><creatorcontrib>Zhou, Hua-Cheng</creatorcontrib><creatorcontrib>Kou, Chun-Hai</creatorcontrib><title>Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances</title><title>Chaos, solitons and fractals</title><description>•We design the disturbance rejection controllers for three classes of fractional heat equations.•Boundary control strategies achieve the power law type stabilization and the asymptotical stabilization for fractional heat e quations without and with time delay, respectively.•Compared with the existing control law for the same fractional heat e quations the control design introduced here is much simple. This work aims to design the disturbance rejection controllers for three classes of fractional heat equations. Based on Filippov’s theory, the existence conclusion for the partial differential inclusion solution (PDIS) is established for fractional heat equations with discontinuous boundary conditions. Boundary control strategies are designed directly without the use of any robust control method to respectively achieve the power-law type stabilization and the asymptotical stabilization for fractional heat equations without and with time delay, respectively. A numerical example is included to illustrate the obtained results.</description><subject>Disturbance rejection control design</subject><subject>Fractional heat equations with delay</subject><subject>Partial differential inclusion solution</subject><subject>Stabilization</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEUhYnRxFp9Aje8wNTLMAVm4UIb_xITN7omDFwcajsoUE3f3qnVraubs_hOzv0IOWcwY8DExXJmexPzrIaazRgDpcQBmTAleVUrJQ_JBFoBFUjZHpOTnJcAwEDUE9Jfx83gTNpSG4eS4ormkkzB1y31MdHSJ0T6FgaXafTUJ2NLiINZ0R5NofixMbuc6Vco_V9FtTbF9uioC7lsUmcGi_mUHHmzynj2e6fk5fbmeXFfPT7dPSyuHivLgZfKOeHQCGZ9J-Z1zVrGBW-8NfO2M1AriR3rvJJzJZtGdNZZBNdKdJJ3EhvBp4Tve22KOSf0-j2F9figZqB3svRS_8jSO1l6L2ukLvcUjtM-AyadbcBxtwsJbdEuhn_5b1wudwM</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Cai, Rui-Yang</creator><creator>Zhou, Hua-Cheng</creator><creator>Kou, Chun-Hai</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6856-2358</orcidid></search><sort><creationdate>202105</creationdate><title>Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances</title><author>Cai, Rui-Yang ; Zhou, Hua-Cheng ; Kou, Chun-Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-dd6dea61cfb65221913634fca59ba0287eb1bf87587446bcdce0d97ed73b7e463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Disturbance rejection control design</topic><topic>Fractional heat equations with delay</topic><topic>Partial differential inclusion solution</topic><topic>Stabilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Rui-Yang</creatorcontrib><creatorcontrib>Zhou, Hua-Cheng</creatorcontrib><creatorcontrib>Kou, Chun-Hai</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Rui-Yang</au><au>Zhou, Hua-Cheng</au><au>Kou, Chun-Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2021-05</date><risdate>2021</risdate><volume>146</volume><spage>110886</spage><pages>110886-</pages><artnum>110886</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>•We design the disturbance rejection controllers for three classes of fractional heat equations.•Boundary control strategies achieve the power law type stabilization and the asymptotical stabilization for fractional heat e quations without and with time delay, respectively.•Compared with the existing control law for the same fractional heat e quations the control design introduced here is much simple. This work aims to design the disturbance rejection controllers for three classes of fractional heat equations. Based on Filippov’s theory, the existence conclusion for the partial differential inclusion solution (PDIS) is established for fractional heat equations with discontinuous boundary conditions. Boundary control strategies are designed directly without the use of any robust control method to respectively achieve the power-law type stabilization and the asymptotical stabilization for fractional heat equations without and with time delay, respectively. A numerical example is included to illustrate the obtained results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2021.110886</doi><orcidid>https://orcid.org/0000-0001-6856-2358</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-0779
ispartof Chaos, solitons and fractals, 2021-05, Vol.146, p.110886, Article 110886
issn 0960-0779
1873-2887
language eng
recordid cdi_crossref_primary_10_1016_j_chaos_2021_110886
source ScienceDirect Freedom Collection
subjects Disturbance rejection control design
Fractional heat equations with delay
Partial differential inclusion solution
Stabilization
title Boundary control strategy for three kinds of fractional heat equations with control-matched disturbances
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20control%20strategy%20for%20three%20kinds%20of%20fractional%20heat%20equations%20with%20control-matched%20disturbances&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Cai,%20Rui-Yang&rft.date=2021-05&rft.volume=146&rft.spage=110886&rft.pages=110886-&rft.artnum=110886&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2021.110886&rft_dat=%3Celsevier_cross%3ES0960077921002393%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-dd6dea61cfb65221913634fca59ba0287eb1bf87587446bcdce0d97ed73b7e463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true