Loading…

An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain

•A non-linear Hilfer system has been studied for mild solution with the aid of Banach contraction principle.•Mönch fixed point theorem ensures the exact controllability of the system concerned.•Existence of optimal pair verified for the Hilfer nonlinear system.•Some numerical approaches have been do...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals solitons and fractals, 2021-05, Vol.146, p.110915, Article 110915
Main Authors: Nisar, Kottakkaran Sooppy, Jothimani, K., Kaliraj, K., Ravichandran, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-f196c3fe82495835d62b5c9a6a9fa371fdce1be25501cd5f261e8bce094d47b73
cites cdi_FETCH-LOGICAL-c303t-f196c3fe82495835d62b5c9a6a9fa371fdce1be25501cd5f261e8bce094d47b73
container_end_page
container_issue
container_start_page 110915
container_title Chaos, solitons and fractals
container_volume 146
creator Nisar, Kottakkaran Sooppy
Jothimani, K.
Kaliraj, K.
Ravichandran, C.
description •A non-linear Hilfer system has been studied for mild solution with the aid of Banach contraction principle.•Mönch fixed point theorem ensures the exact controllability of the system concerned.•Existence of optimal pair verified for the Hilfer nonlinear system.•Some numerical approaches have been done to exemplify the criteria of obtained results using the software ‘mathematica’.•Comparison analysis was done with the major classifications of fractional systems. In this article, the controllability results of the non-dense Hilfer neutral fractional derivative (HNFD) are presented. The results are acknowledged using semigroup theory, fractional calculus, Banach contraction principle, and Mönch technique. Moreover, a numerical analysis is given to enhance our model.
doi_str_mv 10.1016/j.chaos.2021.110915
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2021_110915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077921002691</els_id><sourcerecordid>S0960077921002691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-f196c3fe82495835d62b5c9a6a9fa371fdce1be25501cd5f261e8bce094d47b73</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWKtP4CYvMGMunUsWLkpRKxTc6Dpkkj80JU1Kko707Z1a164OHPgOhw-hR0pqSmj7tKv1VsVcM8JoTSkRtLlCM9p3vGJ9312jGREtqUjXiVt0l_OOEEJJy2bosAxYBeVP2WUcLdYxlBS9V4Pzrpxwgnz0JWMbEw4xeBdAJbx23sJUwLEk5bFNShcXpxlsILlRFTdCxt-ubM9QZSBkwCbulQv36MYqn-HhL-fo6_Xlc7WuNh9v76vlptKc8FJZKlrNLfRsIZqeN6ZlQ6OFapWwinfUGg10ANY0hGrTWNZS6AcNRCzMohs6Pkf8sqtTzDmBlYfk9iqdJCXyLE3u5K80eZYmL9Im6vlCwXRtdJBk1g6CBuMS6CJNdP_yP38_ebk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain</title><source>ScienceDirect Journals</source><creator>Nisar, Kottakkaran Sooppy ; Jothimani, K. ; Kaliraj, K. ; Ravichandran, C.</creator><creatorcontrib>Nisar, Kottakkaran Sooppy ; Jothimani, K. ; Kaliraj, K. ; Ravichandran, C.</creatorcontrib><description>•A non-linear Hilfer system has been studied for mild solution with the aid of Banach contraction principle.•Mönch fixed point theorem ensures the exact controllability of the system concerned.•Existence of optimal pair verified for the Hilfer nonlinear system.•Some numerical approaches have been done to exemplify the criteria of obtained results using the software ‘mathematica’.•Comparison analysis was done with the major classifications of fractional systems. In this article, the controllability results of the non-dense Hilfer neutral fractional derivative (HNFD) are presented. The results are acknowledged using semigroup theory, fractional calculus, Banach contraction principle, and Mönch technique. Moreover, a numerical analysis is given to enhance our model.</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2021.110915</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Banach space ; Controllability ; Fixed point ; Fractional differential equations ; Hilfer derivative ; Non-dense domain</subject><ispartof>Chaos, solitons and fractals, 2021-05, Vol.146, p.110915, Article 110915</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-f196c3fe82495835d62b5c9a6a9fa371fdce1be25501cd5f261e8bce094d47b73</citedby><cites>FETCH-LOGICAL-c303t-f196c3fe82495835d62b5c9a6a9fa371fdce1be25501cd5f261e8bce094d47b73</cites><orcidid>0000-0001-5769-4320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><creatorcontrib>Jothimani, K.</creatorcontrib><creatorcontrib>Kaliraj, K.</creatorcontrib><creatorcontrib>Ravichandran, C.</creatorcontrib><title>An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain</title><title>Chaos, solitons and fractals</title><description>•A non-linear Hilfer system has been studied for mild solution with the aid of Banach contraction principle.•Mönch fixed point theorem ensures the exact controllability of the system concerned.•Existence of optimal pair verified for the Hilfer nonlinear system.•Some numerical approaches have been done to exemplify the criteria of obtained results using the software ‘mathematica’.•Comparison analysis was done with the major classifications of fractional systems. In this article, the controllability results of the non-dense Hilfer neutral fractional derivative (HNFD) are presented. The results are acknowledged using semigroup theory, fractional calculus, Banach contraction principle, and Mönch technique. Moreover, a numerical analysis is given to enhance our model.</description><subject>Banach space</subject><subject>Controllability</subject><subject>Fixed point</subject><subject>Fractional differential equations</subject><subject>Hilfer derivative</subject><subject>Non-dense domain</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEYhYMoWKtP4CYvMGMunUsWLkpRKxTc6Dpkkj80JU1Kko707Z1a164OHPgOhw-hR0pqSmj7tKv1VsVcM8JoTSkRtLlCM9p3vGJ9312jGREtqUjXiVt0l_OOEEJJy2bosAxYBeVP2WUcLdYxlBS9V4Pzrpxwgnz0JWMbEw4xeBdAJbx23sJUwLEk5bFNShcXpxlsILlRFTdCxt-ubM9QZSBkwCbulQv36MYqn-HhL-fo6_Xlc7WuNh9v76vlptKc8FJZKlrNLfRsIZqeN6ZlQ6OFapWwinfUGg10ANY0hGrTWNZS6AcNRCzMohs6Pkf8sqtTzDmBlYfk9iqdJCXyLE3u5K80eZYmL9Im6vlCwXRtdJBk1g6CBuMS6CJNdP_yP38_ebk</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Nisar, Kottakkaran Sooppy</creator><creator>Jothimani, K.</creator><creator>Kaliraj, K.</creator><creator>Ravichandran, C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid></search><sort><creationdate>202105</creationdate><title>An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain</title><author>Nisar, Kottakkaran Sooppy ; Jothimani, K. ; Kaliraj, K. ; Ravichandran, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-f196c3fe82495835d62b5c9a6a9fa371fdce1be25501cd5f261e8bce094d47b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Banach space</topic><topic>Controllability</topic><topic>Fixed point</topic><topic>Fractional differential equations</topic><topic>Hilfer derivative</topic><topic>Non-dense domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><creatorcontrib>Jothimani, K.</creatorcontrib><creatorcontrib>Kaliraj, K.</creatorcontrib><creatorcontrib>Ravichandran, C.</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nisar, Kottakkaran Sooppy</au><au>Jothimani, K.</au><au>Kaliraj, K.</au><au>Ravichandran, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2021-05</date><risdate>2021</risdate><volume>146</volume><spage>110915</spage><pages>110915-</pages><artnum>110915</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>•A non-linear Hilfer system has been studied for mild solution with the aid of Banach contraction principle.•Mönch fixed point theorem ensures the exact controllability of the system concerned.•Existence of optimal pair verified for the Hilfer nonlinear system.•Some numerical approaches have been done to exemplify the criteria of obtained results using the software ‘mathematica’.•Comparison analysis was done with the major classifications of fractional systems. In this article, the controllability results of the non-dense Hilfer neutral fractional derivative (HNFD) are presented. The results are acknowledged using semigroup theory, fractional calculus, Banach contraction principle, and Mönch technique. Moreover, a numerical analysis is given to enhance our model.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2021.110915</doi><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-0779
ispartof Chaos, solitons and fractals, 2021-05, Vol.146, p.110915, Article 110915
issn 0960-0779
1873-2887
language eng
recordid cdi_crossref_primary_10_1016_j_chaos_2021_110915
source ScienceDirect Journals
subjects Banach space
Controllability
Fixed point
Fractional differential equations
Hilfer derivative
Non-dense domain
title An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analysis%20of%20controllability%20results%20for%20nonlinear%20Hilfer%20neutral%20fractional%20derivatives%20with%20non-dense%20domain&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Nisar,%20Kottakkaran%20Sooppy&rft.date=2021-05&rft.volume=146&rft.spage=110915&rft.pages=110915-&rft.artnum=110915&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2021.110915&rft_dat=%3Celsevier_cross%3ES0960077921002691%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-f196c3fe82495835d62b5c9a6a9fa371fdce1be25501cd5f261e8bce094d47b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true