Loading…
An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain
•A non-linear Hilfer system has been studied for mild solution with the aid of Banach contraction principle.•Mönch fixed point theorem ensures the exact controllability of the system concerned.•Existence of optimal pair verified for the Hilfer nonlinear system.•Some numerical approaches have been do...
Saved in:
Published in: | Chaos, solitons and fractals solitons and fractals, 2021-05, Vol.146, p.110915, Article 110915 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c303t-f196c3fe82495835d62b5c9a6a9fa371fdce1be25501cd5f261e8bce094d47b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c303t-f196c3fe82495835d62b5c9a6a9fa371fdce1be25501cd5f261e8bce094d47b73 |
container_end_page | |
container_issue | |
container_start_page | 110915 |
container_title | Chaos, solitons and fractals |
container_volume | 146 |
creator | Nisar, Kottakkaran Sooppy Jothimani, K. Kaliraj, K. Ravichandran, C. |
description | •A non-linear Hilfer system has been studied for mild solution with the aid of Banach contraction principle.•Mönch fixed point theorem ensures the exact controllability of the system concerned.•Existence of optimal pair verified for the Hilfer nonlinear system.•Some numerical approaches have been done to exemplify the criteria of obtained results using the software ‘mathematica’.•Comparison analysis was done with the major classifications of fractional systems.
In this article, the controllability results of the non-dense Hilfer neutral fractional derivative (HNFD) are presented. The results are acknowledged using semigroup theory, fractional calculus, Banach contraction principle, and Mönch technique. Moreover, a numerical analysis is given to enhance our model. |
doi_str_mv | 10.1016/j.chaos.2021.110915 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2021_110915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077921002691</els_id><sourcerecordid>S0960077921002691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-f196c3fe82495835d62b5c9a6a9fa371fdce1be25501cd5f261e8bce094d47b73</originalsourceid><addsrcrecordid>eNp9kMtKAzEYhYMoWKtP4CYvMGMunUsWLkpRKxTc6Dpkkj80JU1Kko707Z1a164OHPgOhw-hR0pqSmj7tKv1VsVcM8JoTSkRtLlCM9p3vGJ9312jGREtqUjXiVt0l_OOEEJJy2bosAxYBeVP2WUcLdYxlBS9V4Pzrpxwgnz0JWMbEw4xeBdAJbx23sJUwLEk5bFNShcXpxlsILlRFTdCxt-ubM9QZSBkwCbulQv36MYqn-HhL-fo6_Xlc7WuNh9v76vlptKc8FJZKlrNLfRsIZqeN6ZlQ6OFapWwinfUGg10ANY0hGrTWNZS6AcNRCzMohs6Pkf8sqtTzDmBlYfk9iqdJCXyLE3u5K80eZYmL9Im6vlCwXRtdJBk1g6CBuMS6CJNdP_yP38_ebk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain</title><source>ScienceDirect Journals</source><creator>Nisar, Kottakkaran Sooppy ; Jothimani, K. ; Kaliraj, K. ; Ravichandran, C.</creator><creatorcontrib>Nisar, Kottakkaran Sooppy ; Jothimani, K. ; Kaliraj, K. ; Ravichandran, C.</creatorcontrib><description>•A non-linear Hilfer system has been studied for mild solution with the aid of Banach contraction principle.•Mönch fixed point theorem ensures the exact controllability of the system concerned.•Existence of optimal pair verified for the Hilfer nonlinear system.•Some numerical approaches have been done to exemplify the criteria of obtained results using the software ‘mathematica’.•Comparison analysis was done with the major classifications of fractional systems.
In this article, the controllability results of the non-dense Hilfer neutral fractional derivative (HNFD) are presented. The results are acknowledged using semigroup theory, fractional calculus, Banach contraction principle, and Mönch technique. Moreover, a numerical analysis is given to enhance our model.</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2021.110915</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Banach space ; Controllability ; Fixed point ; Fractional differential equations ; Hilfer derivative ; Non-dense domain</subject><ispartof>Chaos, solitons and fractals, 2021-05, Vol.146, p.110915, Article 110915</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-f196c3fe82495835d62b5c9a6a9fa371fdce1be25501cd5f261e8bce094d47b73</citedby><cites>FETCH-LOGICAL-c303t-f196c3fe82495835d62b5c9a6a9fa371fdce1be25501cd5f261e8bce094d47b73</cites><orcidid>0000-0001-5769-4320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><creatorcontrib>Jothimani, K.</creatorcontrib><creatorcontrib>Kaliraj, K.</creatorcontrib><creatorcontrib>Ravichandran, C.</creatorcontrib><title>An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain</title><title>Chaos, solitons and fractals</title><description>•A non-linear Hilfer system has been studied for mild solution with the aid of Banach contraction principle.•Mönch fixed point theorem ensures the exact controllability of the system concerned.•Existence of optimal pair verified for the Hilfer nonlinear system.•Some numerical approaches have been done to exemplify the criteria of obtained results using the software ‘mathematica’.•Comparison analysis was done with the major classifications of fractional systems.
In this article, the controllability results of the non-dense Hilfer neutral fractional derivative (HNFD) are presented. The results are acknowledged using semigroup theory, fractional calculus, Banach contraction principle, and Mönch technique. Moreover, a numerical analysis is given to enhance our model.</description><subject>Banach space</subject><subject>Controllability</subject><subject>Fixed point</subject><subject>Fractional differential equations</subject><subject>Hilfer derivative</subject><subject>Non-dense domain</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEYhYMoWKtP4CYvMGMunUsWLkpRKxTc6Dpkkj80JU1Kko707Z1a164OHPgOhw-hR0pqSmj7tKv1VsVcM8JoTSkRtLlCM9p3vGJ9312jGREtqUjXiVt0l_OOEEJJy2bosAxYBeVP2WUcLdYxlBS9V4Pzrpxwgnz0JWMbEw4xeBdAJbx23sJUwLEk5bFNShcXpxlsILlRFTdCxt-ubM9QZSBkwCbulQv36MYqn-HhL-fo6_Xlc7WuNh9v76vlptKc8FJZKlrNLfRsIZqeN6ZlQ6OFapWwinfUGg10ANY0hGrTWNZS6AcNRCzMohs6Pkf8sqtTzDmBlYfk9iqdJCXyLE3u5K80eZYmL9Im6vlCwXRtdJBk1g6CBuMS6CJNdP_yP38_ebk</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Nisar, Kottakkaran Sooppy</creator><creator>Jothimani, K.</creator><creator>Kaliraj, K.</creator><creator>Ravichandran, C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid></search><sort><creationdate>202105</creationdate><title>An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain</title><author>Nisar, Kottakkaran Sooppy ; Jothimani, K. ; Kaliraj, K. ; Ravichandran, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-f196c3fe82495835d62b5c9a6a9fa371fdce1be25501cd5f261e8bce094d47b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Banach space</topic><topic>Controllability</topic><topic>Fixed point</topic><topic>Fractional differential equations</topic><topic>Hilfer derivative</topic><topic>Non-dense domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><creatorcontrib>Jothimani, K.</creatorcontrib><creatorcontrib>Kaliraj, K.</creatorcontrib><creatorcontrib>Ravichandran, C.</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nisar, Kottakkaran Sooppy</au><au>Jothimani, K.</au><au>Kaliraj, K.</au><au>Ravichandran, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2021-05</date><risdate>2021</risdate><volume>146</volume><spage>110915</spage><pages>110915-</pages><artnum>110915</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>•A non-linear Hilfer system has been studied for mild solution with the aid of Banach contraction principle.•Mönch fixed point theorem ensures the exact controllability of the system concerned.•Existence of optimal pair verified for the Hilfer nonlinear system.•Some numerical approaches have been done to exemplify the criteria of obtained results using the software ‘mathematica’.•Comparison analysis was done with the major classifications of fractional systems.
In this article, the controllability results of the non-dense Hilfer neutral fractional derivative (HNFD) are presented. The results are acknowledged using semigroup theory, fractional calculus, Banach contraction principle, and Mönch technique. Moreover, a numerical analysis is given to enhance our model.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2021.110915</doi><orcidid>https://orcid.org/0000-0001-5769-4320</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-0779 |
ispartof | Chaos, solitons and fractals, 2021-05, Vol.146, p.110915, Article 110915 |
issn | 0960-0779 1873-2887 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_chaos_2021_110915 |
source | ScienceDirect Journals |
subjects | Banach space Controllability Fixed point Fractional differential equations Hilfer derivative Non-dense domain |
title | An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A25%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analysis%20of%20controllability%20results%20for%20nonlinear%20Hilfer%20neutral%20fractional%20derivatives%20with%20non-dense%20domain&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Nisar,%20Kottakkaran%20Sooppy&rft.date=2021-05&rft.volume=146&rft.spage=110915&rft.pages=110915-&rft.artnum=110915&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2021.110915&rft_dat=%3Celsevier_cross%3ES0960077921002691%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-f196c3fe82495835d62b5c9a6a9fa371fdce1be25501cd5f261e8bce094d47b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |