Loading…
Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation
•A new approach for designing the computational method has been considered.•This new approach results in a local truncation error containing much lower derivatives of exact solution compared to classical methods.•The method allows to weaken or get rid of the smoothness of the data functions, a deter...
Saved in:
Published in: | Chaos, solitons and fractals solitons and fractals, 2021-09, Vol.150, p.111100, Article 111100 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c303t-d5807923dca01dba3dcc8b5b27351f32055925a280fc4e5df89d99ac12d974bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c303t-d5807923dca01dba3dcc8b5b27351f32055925a280fc4e5df89d99ac12d974bc3 |
container_end_page | |
container_issue | |
container_start_page | 111100 |
container_title | Chaos, solitons and fractals |
container_volume | 150 |
creator | Yapman, Ömer Amiraliyev, Gabil M. |
description | •A new approach for designing the computational method has been considered.•This new approach results in a local truncation error containing much lower derivatives of exact solution compared to classical methods.•The method allows to weaken or get rid of the smoothness of the data functions, a determining factor for convergence analysis.•The previous works related to Volterra integro-differential equation were only concerned with regular cases.•Problems involving boundary layers have a solution with bad behaviours in applications encountered in different fields of engineering.
A linear Volterra delay-integro-differential equation with a singular perturbation parameter ε is considered. The problem is discretized using exponentially fitted schemes on the Shishkin type meshes. It is proved that the numerical approximations generated by this method are O(N−2lnN) convergent in the discrete maximum norm, where N is the mesh parameter. Numerical results show a good agreement with the theoretical analysis. |
doi_str_mv | 10.1016/j.chaos.2021.111100 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2021_111100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077921004549</els_id><sourcerecordid>S0960077921004549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-d5807923dca01dba3dcc8b5b27351f32055925a280fc4e5df89d99ac12d974bc3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAja-QMrYaZpkwQJV_EmV2ABby7HHras0LmO3Ui7BmUlb2DKbGenT-zR6jN0KmAgQs7v1xKx0iBMJUkzEMABnbCSqMs9kVZXnbAT1DDIoy_qSXcW4BgABMzli3_PQ7ZGW2BnkutNtH33kwfG0Qr4KmzAkGHaRRzShszyQReLWO4d0ZDaYVsFyF4hrHn233LWa2p5vkdKOGrT8M7QJiTS32Oo-813CJYXsryN53XL82unkQ3fNLpxuI9787jH7eHp8n79ki7fn1_nDIjM55CmzRQVlLXNrNAjb6OEwVVM0sswL4XIJRVHLQssKnJliYV1V27rWRkhbl9PG5GOWn3oNhRgJndqS32jqlQB1UKrW6qhUHZSqk9KBuj9ROLy290gqGn-wYD2hScoG_y__A5uThOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation</title><source>ScienceDirect Journals</source><creator>Yapman, Ömer ; Amiraliyev, Gabil M.</creator><creatorcontrib>Yapman, Ömer ; Amiraliyev, Gabil M.</creatorcontrib><description>•A new approach for designing the computational method has been considered.•This new approach results in a local truncation error containing much lower derivatives of exact solution compared to classical methods.•The method allows to weaken or get rid of the smoothness of the data functions, a determining factor for convergence analysis.•The previous works related to Volterra integro-differential equation were only concerned with regular cases.•Problems involving boundary layers have a solution with bad behaviours in applications encountered in different fields of engineering.
A linear Volterra delay-integro-differential equation with a singular perturbation parameter ε is considered. The problem is discretized using exponentially fitted schemes on the Shishkin type meshes. It is proved that the numerical approximations generated by this method are O(N−2lnN) convergent in the discrete maximum norm, where N is the mesh parameter. Numerical results show a good agreement with the theoretical analysis.</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2021.111100</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Finite difference method ; Singular perturbation ; Uniform convergence ; Volterra delay-integro-differential equation</subject><ispartof>Chaos, solitons and fractals, 2021-09, Vol.150, p.111100, Article 111100</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-d5807923dca01dba3dcc8b5b27351f32055925a280fc4e5df89d99ac12d974bc3</citedby><cites>FETCH-LOGICAL-c303t-d5807923dca01dba3dcc8b5b27351f32055925a280fc4e5df89d99ac12d974bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yapman, Ömer</creatorcontrib><creatorcontrib>Amiraliyev, Gabil M.</creatorcontrib><title>Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation</title><title>Chaos, solitons and fractals</title><description>•A new approach for designing the computational method has been considered.•This new approach results in a local truncation error containing much lower derivatives of exact solution compared to classical methods.•The method allows to weaken or get rid of the smoothness of the data functions, a determining factor for convergence analysis.•The previous works related to Volterra integro-differential equation were only concerned with regular cases.•Problems involving boundary layers have a solution with bad behaviours in applications encountered in different fields of engineering.
A linear Volterra delay-integro-differential equation with a singular perturbation parameter ε is considered. The problem is discretized using exponentially fitted schemes on the Shishkin type meshes. It is proved that the numerical approximations generated by this method are O(N−2lnN) convergent in the discrete maximum norm, where N is the mesh parameter. Numerical results show a good agreement with the theoretical analysis.</description><subject>Finite difference method</subject><subject>Singular perturbation</subject><subject>Uniform convergence</subject><subject>Volterra delay-integro-differential equation</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAja-QMrYaZpkwQJV_EmV2ABby7HHras0LmO3Ui7BmUlb2DKbGenT-zR6jN0KmAgQs7v1xKx0iBMJUkzEMABnbCSqMs9kVZXnbAT1DDIoy_qSXcW4BgABMzli3_PQ7ZGW2BnkutNtH33kwfG0Qr4KmzAkGHaRRzShszyQReLWO4d0ZDaYVsFyF4hrHn233LWa2p5vkdKOGrT8M7QJiTS32Oo-813CJYXsryN53XL82unkQ3fNLpxuI9787jH7eHp8n79ki7fn1_nDIjM55CmzRQVlLXNrNAjb6OEwVVM0sswL4XIJRVHLQssKnJliYV1V27rWRkhbl9PG5GOWn3oNhRgJndqS32jqlQB1UKrW6qhUHZSqk9KBuj9ROLy290gqGn-wYD2hScoG_y__A5uThOw</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Yapman, Ömer</creator><creator>Amiraliyev, Gabil M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202109</creationdate><title>Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation</title><author>Yapman, Ömer ; Amiraliyev, Gabil M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-d5807923dca01dba3dcc8b5b27351f32055925a280fc4e5df89d99ac12d974bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Finite difference method</topic><topic>Singular perturbation</topic><topic>Uniform convergence</topic><topic>Volterra delay-integro-differential equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yapman, Ömer</creatorcontrib><creatorcontrib>Amiraliyev, Gabil M.</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yapman, Ömer</au><au>Amiraliyev, Gabil M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2021-09</date><risdate>2021</risdate><volume>150</volume><spage>111100</spage><pages>111100-</pages><artnum>111100</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>•A new approach for designing the computational method has been considered.•This new approach results in a local truncation error containing much lower derivatives of exact solution compared to classical methods.•The method allows to weaken or get rid of the smoothness of the data functions, a determining factor for convergence analysis.•The previous works related to Volterra integro-differential equation were only concerned with regular cases.•Problems involving boundary layers have a solution with bad behaviours in applications encountered in different fields of engineering.
A linear Volterra delay-integro-differential equation with a singular perturbation parameter ε is considered. The problem is discretized using exponentially fitted schemes on the Shishkin type meshes. It is proved that the numerical approximations generated by this method are O(N−2lnN) convergent in the discrete maximum norm, where N is the mesh parameter. Numerical results show a good agreement with the theoretical analysis.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2021.111100</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-0779 |
ispartof | Chaos, solitons and fractals, 2021-09, Vol.150, p.111100, Article 111100 |
issn | 0960-0779 1873-2887 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_chaos_2021_111100 |
source | ScienceDirect Journals |
subjects | Finite difference method Singular perturbation Uniform convergence Volterra delay-integro-differential equation |
title | Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20analysis%20of%20the%20homogeneous%20second%20order%20difference%20method%20for%20a%20singularly%20perturbed%20Volterra%20delay-integro-differential%20equation&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Yapman,%20%C3%96mer&rft.date=2021-09&rft.volume=150&rft.spage=111100&rft.pages=111100-&rft.artnum=111100&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2021.111100&rft_dat=%3Celsevier_cross%3ES0960077921004549%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-d5807923dca01dba3dcc8b5b27351f32055925a280fc4e5df89d99ac12d974bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |