Loading…

Stability and dynamics of complex order fractional difference equations

We extend the definition of n-dimensional difference equations to complex order. We investigate the stability of linear systems defined by an n-dimensional matrix and derive the conditions for the stability of zero solution of linear systems. For the one-dimensional case, we find that the stability...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals solitons and fractals, 2022-05, Vol.158, p.112063, Article 112063
Main Authors: Bhalekar, Sachin, Gade, Prashant M., Joshi, Divya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-9fcf7a9510fade7a67e94c3a15d0f68688464e336a6f48da97ab909d5d33900b3
cites cdi_FETCH-LOGICAL-c303t-9fcf7a9510fade7a67e94c3a15d0f68688464e336a6f48da97ab909d5d33900b3
container_end_page
container_issue
container_start_page 112063
container_title Chaos, solitons and fractals
container_volume 158
creator Bhalekar, Sachin
Gade, Prashant M.
Joshi, Divya
description We extend the definition of n-dimensional difference equations to complex order. We investigate the stability of linear systems defined by an n-dimensional matrix and derive the conditions for the stability of zero solution of linear systems. For the one-dimensional case, we find that the stability region, if any is enclosed by a boundary curve and we obtain a parametric equation for the same. Furthermore, we find that there is no stable region if this parametric curve is self-intersecting. Even for the real eigenvalues, the solutions can be complex and dynamics in one-dimension is richer than the case for real order. These results can be extended to n-dimensions. For nonlinear systems, we observe that the stability of the linearized system determines the stability of the equilibrium point. •Extended the definition of n-dimensional difference equations to complex order•Provided the parametric equations for the boundary of stable region•If the boundary curve has multiple points, then the system is unstable.•The dynamics is richer than the real-order case.•Stability of the linearized system determines the stability of the equilibrium point of nonlinear system.
doi_str_mv 10.1016/j.chaos.2022.112063
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2022_112063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077922002739</els_id><sourcerecordid>S0960077922002739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-9fcf7a9510fade7a67e94c3a15d0f68688464e336a6f48da97ab909d5d33900b3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKtP4CYvMOPNZJqfhQspWoWCC3UdbvODKdNJTUaxb2_Hce3qwoHvcO5HyDWDmgETN9vavmMqdQNNUzPWgOAnZMaU5FWjlDwlM9ACKpBSn5OLUrYAwEA0M7J6GXATuzgcKPaOukOPu2gLTYHatNt3_pum7HymIaMdYuqxoy6G4LPvraf-4xPHtFySs4Bd8Vd_d07eHu5fl4_V-nn1tLxbV5YDHyodbJCoFwwCOi9RSK9by5EtHAShhFKtaD3nAkVolUMtcaNBu4XjXANs-JzwqdfmVEr2wexz3GE-GAZmdGG25teFGV2YycWRup0of5z2FX02xcbxARezt4NxKf7L_wDBcWmK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability and dynamics of complex order fractional difference equations</title><source>Elsevier</source><creator>Bhalekar, Sachin ; Gade, Prashant M. ; Joshi, Divya</creator><creatorcontrib>Bhalekar, Sachin ; Gade, Prashant M. ; Joshi, Divya</creatorcontrib><description>We extend the definition of n-dimensional difference equations to complex order. We investigate the stability of linear systems defined by an n-dimensional matrix and derive the conditions for the stability of zero solution of linear systems. For the one-dimensional case, we find that the stability region, if any is enclosed by a boundary curve and we obtain a parametric equation for the same. Furthermore, we find that there is no stable region if this parametric curve is self-intersecting. Even for the real eigenvalues, the solutions can be complex and dynamics in one-dimension is richer than the case for real order. These results can be extended to n-dimensions. For nonlinear systems, we observe that the stability of the linearized system determines the stability of the equilibrium point. •Extended the definition of n-dimensional difference equations to complex order•Provided the parametric equations for the boundary of stable region•If the boundary curve has multiple points, then the system is unstable.•The dynamics is richer than the real-order case.•Stability of the linearized system determines the stability of the equilibrium point of nonlinear system.</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2022.112063</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Complex order ; Fractional difference equation ; Stability</subject><ispartof>Chaos, solitons and fractals, 2022-05, Vol.158, p.112063, Article 112063</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-9fcf7a9510fade7a67e94c3a15d0f68688464e336a6f48da97ab909d5d33900b3</citedby><cites>FETCH-LOGICAL-c303t-9fcf7a9510fade7a67e94c3a15d0f68688464e336a6f48da97ab909d5d33900b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Bhalekar, Sachin</creatorcontrib><creatorcontrib>Gade, Prashant M.</creatorcontrib><creatorcontrib>Joshi, Divya</creatorcontrib><title>Stability and dynamics of complex order fractional difference equations</title><title>Chaos, solitons and fractals</title><description>We extend the definition of n-dimensional difference equations to complex order. We investigate the stability of linear systems defined by an n-dimensional matrix and derive the conditions for the stability of zero solution of linear systems. For the one-dimensional case, we find that the stability region, if any is enclosed by a boundary curve and we obtain a parametric equation for the same. Furthermore, we find that there is no stable region if this parametric curve is self-intersecting. Even for the real eigenvalues, the solutions can be complex and dynamics in one-dimension is richer than the case for real order. These results can be extended to n-dimensions. For nonlinear systems, we observe that the stability of the linearized system determines the stability of the equilibrium point. •Extended the definition of n-dimensional difference equations to complex order•Provided the parametric equations for the boundary of stable region•If the boundary curve has multiple points, then the system is unstable.•The dynamics is richer than the real-order case.•Stability of the linearized system determines the stability of the equilibrium point of nonlinear system.</description><subject>Complex order</subject><subject>Fractional difference equation</subject><subject>Stability</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKtP4CYvMOPNZJqfhQspWoWCC3UdbvODKdNJTUaxb2_Hce3qwoHvcO5HyDWDmgETN9vavmMqdQNNUzPWgOAnZMaU5FWjlDwlM9ACKpBSn5OLUrYAwEA0M7J6GXATuzgcKPaOukOPu2gLTYHatNt3_pum7HymIaMdYuqxoy6G4LPvraf-4xPHtFySs4Bd8Vd_d07eHu5fl4_V-nn1tLxbV5YDHyodbJCoFwwCOi9RSK9by5EtHAShhFKtaD3nAkVolUMtcaNBu4XjXANs-JzwqdfmVEr2wexz3GE-GAZmdGG25teFGV2YycWRup0of5z2FX02xcbxARezt4NxKf7L_wDBcWmK</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Bhalekar, Sachin</creator><creator>Gade, Prashant M.</creator><creator>Joshi, Divya</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202205</creationdate><title>Stability and dynamics of complex order fractional difference equations</title><author>Bhalekar, Sachin ; Gade, Prashant M. ; Joshi, Divya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-9fcf7a9510fade7a67e94c3a15d0f68688464e336a6f48da97ab909d5d33900b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Complex order</topic><topic>Fractional difference equation</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhalekar, Sachin</creatorcontrib><creatorcontrib>Gade, Prashant M.</creatorcontrib><creatorcontrib>Joshi, Divya</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhalekar, Sachin</au><au>Gade, Prashant M.</au><au>Joshi, Divya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and dynamics of complex order fractional difference equations</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2022-05</date><risdate>2022</risdate><volume>158</volume><spage>112063</spage><pages>112063-</pages><artnum>112063</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>We extend the definition of n-dimensional difference equations to complex order. We investigate the stability of linear systems defined by an n-dimensional matrix and derive the conditions for the stability of zero solution of linear systems. For the one-dimensional case, we find that the stability region, if any is enclosed by a boundary curve and we obtain a parametric equation for the same. Furthermore, we find that there is no stable region if this parametric curve is self-intersecting. Even for the real eigenvalues, the solutions can be complex and dynamics in one-dimension is richer than the case for real order. These results can be extended to n-dimensions. For nonlinear systems, we observe that the stability of the linearized system determines the stability of the equilibrium point. •Extended the definition of n-dimensional difference equations to complex order•Provided the parametric equations for the boundary of stable region•If the boundary curve has multiple points, then the system is unstable.•The dynamics is richer than the real-order case.•Stability of the linearized system determines the stability of the equilibrium point of nonlinear system.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2022.112063</doi></addata></record>
fulltext fulltext
identifier ISSN: 0960-0779
ispartof Chaos, solitons and fractals, 2022-05, Vol.158, p.112063, Article 112063
issn 0960-0779
1873-2887
language eng
recordid cdi_crossref_primary_10_1016_j_chaos_2022_112063
source Elsevier
subjects Complex order
Fractional difference equation
Stability
title Stability and dynamics of complex order fractional difference equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A56%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20dynamics%20of%20complex%20order%20fractional%20difference%20equations&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Bhalekar,%20Sachin&rft.date=2022-05&rft.volume=158&rft.spage=112063&rft.pages=112063-&rft.artnum=112063&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2022.112063&rft_dat=%3Celsevier_cross%3ES0960077922002739%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-9fcf7a9510fade7a67e94c3a15d0f68688464e336a6f48da97ab909d5d33900b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true