Loading…
A computational approach for numerical simulations of the fractal–fractional autoimmune disease model
The major goal of this study is to describe and analyse numerical simulations based on Adams–Bashforth approach for fractal–fractional order autoimmune disease framework, to explore the function of viruses in the progression of autoimmune disease. Target cells, damaged cells, viruses, and effector i...
Saved in:
Published in: | Chaos, solitons and fractals solitons and fractals, 2022-12, Vol.165, p.112829, Article 112829 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The major goal of this study is to describe and analyse numerical simulations based on Adams–Bashforth approach for fractal–fractional order autoimmune disease framework, to explore the function of viruses in the progression of autoimmune disease. Target cells, damaged cells, viruses, and effector immune cells are all studied using the Caputo fractal–fractional operator. Fixed point theorems are used to demonstrate the existence and uniqueness of the framework. The numerical technique is described utilizing Lagrange piecewise interpolation to achieve the numerical solution for different choices of the parameters. From a biological standpoint, the influence of different factors on the system and the numerical simulation results are explored. We compare the outcomes of distinct choices of the fractal and fractional order parameters to integer order results. The proposed model captures the relevant autoimmune disease behaviour with recurrent flare-ups in the typical instance, whereas mild symptoms are emphasized in various fractional and fractal–fractional scenarios. |
---|---|
ISSN: | 0960-0779 1873-2887 |
DOI: | 10.1016/j.chaos.2022.112829 |