Loading…
A deep reinforcement learning method to control chaos synchronization between two identical chaotic systems
We propose a model-free deep reinforcement learning method for controlling the synchronization between two identical chaotic systems, one target and one reference. By interacting with the target and the reference, the agent continuously optimizes its strategy of applying perturbations to the target...
Saved in:
Published in: | Chaos, solitons and fractals solitons and fractals, 2023-09, Vol.174, p.113809, Article 113809 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c303t-c9f462093823d2fa52b74e9d94dfaddd1fc3c1b98e6267f51b672ba31d33721b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c303t-c9f462093823d2fa52b74e9d94dfaddd1fc3c1b98e6267f51b672ba31d33721b3 |
container_end_page | |
container_issue | |
container_start_page | 113809 |
container_title | Chaos, solitons and fractals |
container_volume | 174 |
creator | Cheng, Haoxin Li, Haihong Dai, Qionglin Yang, Junzhong |
description | We propose a model-free deep reinforcement learning method for controlling the synchronization between two identical chaotic systems, one target and one reference. By interacting with the target and the reference, the agent continuously optimizes its strategy of applying perturbations to the target to synchronize the trajectory of the target with the reference. This method is different from previous chaos synchronization methods. It requires no prior knowledge of the chaotic systems. We apply the deep reinforcement learning method to several typical chaotic systems (Lorenz system, Rössler system, Chua circuit and Logistic map) and its efficiency of controlling synchronization between the target and the reference is demonstrated. Especially, we find that a single learned agent can be used to control the chaos synchronization for different chaotic systems. We also find that the method works well in controlling chaos synchronization even when only incomplete information of the state variables of the target and the reference can be obtained.
•A model-free deep reinforcement learning method for controlling chaos synchronization is proposed.•The efficiency of controlling synchronization is demonstrated.•A single learned agent can be used to control the chaos synchronization for different chaotic systems.•The method works well even when only incomplete information of the state variables of the chaotic systems can be obtained. |
doi_str_mv | 10.1016/j.chaos.2023.113809 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2023_113809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077923007105</els_id><sourcerecordid>S0960077923007105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-c9f462093823d2fa52b74e9d94dfaddd1fc3c1b98e6267f51b672ba31d33721b3</originalsourceid><addsrcrecordid>eNqFkLtOAzEURC0EEiHwBTT-gV38SNbrgiKKeElINFBbXvuaOGzsyLaIwtezyVJRQHWnmDNXMwhdU1JTQpubdW1WOuaaEcZrSnlL5Ama0FbwirWtOEUTIhtSESHkObrIeU0IoaRhE_SxwBZgixP44GIysIFQcA86BR_e8QbKKlpcIjYxlBR7fHyE8z6YVYrBf-niY8AdlB1AwGUXsbdDhDd69A5qcOcCm3yJzpzuM1z93Cl6u797XT5Wzy8PT8vFc2U44aUy0s0aRiRvGbfM6TnrxAyklTPrtLWWOsMN7WQLDWuEm9OuEazTnFrOBaMdnyI-5poUc07g1Db5jU57RYk67KXW6lhDHfZS414DJX9Rxpdju5K07_9hb0cWhlqfHpLKxkMwYH0CU5SN_k_-Gwwgit0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A deep reinforcement learning method to control chaos synchronization between two identical chaotic systems</title><source>Elsevier</source><creator>Cheng, Haoxin ; Li, Haihong ; Dai, Qionglin ; Yang, Junzhong</creator><creatorcontrib>Cheng, Haoxin ; Li, Haihong ; Dai, Qionglin ; Yang, Junzhong</creatorcontrib><description>We propose a model-free deep reinforcement learning method for controlling the synchronization between two identical chaotic systems, one target and one reference. By interacting with the target and the reference, the agent continuously optimizes its strategy of applying perturbations to the target to synchronize the trajectory of the target with the reference. This method is different from previous chaos synchronization methods. It requires no prior knowledge of the chaotic systems. We apply the deep reinforcement learning method to several typical chaotic systems (Lorenz system, Rössler system, Chua circuit and Logistic map) and its efficiency of controlling synchronization between the target and the reference is demonstrated. Especially, we find that a single learned agent can be used to control the chaos synchronization for different chaotic systems. We also find that the method works well in controlling chaos synchronization even when only incomplete information of the state variables of the target and the reference can be obtained.
•A model-free deep reinforcement learning method for controlling chaos synchronization is proposed.•The efficiency of controlling synchronization is demonstrated.•A single learned agent can be used to control the chaos synchronization for different chaotic systems.•The method works well even when only incomplete information of the state variables of the chaotic systems can be obtained.</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2023.113809</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chaos synchronization ; Continuous control ; Deep reinforcement learning ; Model-free method</subject><ispartof>Chaos, solitons and fractals, 2023-09, Vol.174, p.113809, Article 113809</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-c9f462093823d2fa52b74e9d94dfaddd1fc3c1b98e6267f51b672ba31d33721b3</citedby><cites>FETCH-LOGICAL-c303t-c9f462093823d2fa52b74e9d94dfaddd1fc3c1b98e6267f51b672ba31d33721b3</cites><orcidid>0000-0001-6120-4689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Cheng, Haoxin</creatorcontrib><creatorcontrib>Li, Haihong</creatorcontrib><creatorcontrib>Dai, Qionglin</creatorcontrib><creatorcontrib>Yang, Junzhong</creatorcontrib><title>A deep reinforcement learning method to control chaos synchronization between two identical chaotic systems</title><title>Chaos, solitons and fractals</title><description>We propose a model-free deep reinforcement learning method for controlling the synchronization between two identical chaotic systems, one target and one reference. By interacting with the target and the reference, the agent continuously optimizes its strategy of applying perturbations to the target to synchronize the trajectory of the target with the reference. This method is different from previous chaos synchronization methods. It requires no prior knowledge of the chaotic systems. We apply the deep reinforcement learning method to several typical chaotic systems (Lorenz system, Rössler system, Chua circuit and Logistic map) and its efficiency of controlling synchronization between the target and the reference is demonstrated. Especially, we find that a single learned agent can be used to control the chaos synchronization for different chaotic systems. We also find that the method works well in controlling chaos synchronization even when only incomplete information of the state variables of the target and the reference can be obtained.
•A model-free deep reinforcement learning method for controlling chaos synchronization is proposed.•The efficiency of controlling synchronization is demonstrated.•A single learned agent can be used to control the chaos synchronization for different chaotic systems.•The method works well even when only incomplete information of the state variables of the chaotic systems can be obtained.</description><subject>Chaos synchronization</subject><subject>Continuous control</subject><subject>Deep reinforcement learning</subject><subject>Model-free method</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOAzEURC0EEiHwBTT-gV38SNbrgiKKeElINFBbXvuaOGzsyLaIwtezyVJRQHWnmDNXMwhdU1JTQpubdW1WOuaaEcZrSnlL5Ama0FbwirWtOEUTIhtSESHkObrIeU0IoaRhE_SxwBZgixP44GIysIFQcA86BR_e8QbKKlpcIjYxlBR7fHyE8z6YVYrBf-niY8AdlB1AwGUXsbdDhDd69A5qcOcCm3yJzpzuM1z93Cl6u797XT5Wzy8PT8vFc2U44aUy0s0aRiRvGbfM6TnrxAyklTPrtLWWOsMN7WQLDWuEm9OuEazTnFrOBaMdnyI-5poUc07g1Db5jU57RYk67KXW6lhDHfZS414DJX9Rxpdju5K07_9hb0cWhlqfHpLKxkMwYH0CU5SN_k_-Gwwgit0</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Cheng, Haoxin</creator><creator>Li, Haihong</creator><creator>Dai, Qionglin</creator><creator>Yang, Junzhong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6120-4689</orcidid></search><sort><creationdate>202309</creationdate><title>A deep reinforcement learning method to control chaos synchronization between two identical chaotic systems</title><author>Cheng, Haoxin ; Li, Haihong ; Dai, Qionglin ; Yang, Junzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-c9f462093823d2fa52b74e9d94dfaddd1fc3c1b98e6267f51b672ba31d33721b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chaos synchronization</topic><topic>Continuous control</topic><topic>Deep reinforcement learning</topic><topic>Model-free method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Haoxin</creatorcontrib><creatorcontrib>Li, Haihong</creatorcontrib><creatorcontrib>Dai, Qionglin</creatorcontrib><creatorcontrib>Yang, Junzhong</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Haoxin</au><au>Li, Haihong</au><au>Dai, Qionglin</au><au>Yang, Junzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep reinforcement learning method to control chaos synchronization between two identical chaotic systems</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2023-09</date><risdate>2023</risdate><volume>174</volume><spage>113809</spage><pages>113809-</pages><artnum>113809</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>We propose a model-free deep reinforcement learning method for controlling the synchronization between two identical chaotic systems, one target and one reference. By interacting with the target and the reference, the agent continuously optimizes its strategy of applying perturbations to the target to synchronize the trajectory of the target with the reference. This method is different from previous chaos synchronization methods. It requires no prior knowledge of the chaotic systems. We apply the deep reinforcement learning method to several typical chaotic systems (Lorenz system, Rössler system, Chua circuit and Logistic map) and its efficiency of controlling synchronization between the target and the reference is demonstrated. Especially, we find that a single learned agent can be used to control the chaos synchronization for different chaotic systems. We also find that the method works well in controlling chaos synchronization even when only incomplete information of the state variables of the target and the reference can be obtained.
•A model-free deep reinforcement learning method for controlling chaos synchronization is proposed.•The efficiency of controlling synchronization is demonstrated.•A single learned agent can be used to control the chaos synchronization for different chaotic systems.•The method works well even when only incomplete information of the state variables of the chaotic systems can be obtained.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2023.113809</doi><orcidid>https://orcid.org/0000-0001-6120-4689</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-0779 |
ispartof | Chaos, solitons and fractals, 2023-09, Vol.174, p.113809, Article 113809 |
issn | 0960-0779 1873-2887 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_chaos_2023_113809 |
source | Elsevier |
subjects | Chaos synchronization Continuous control Deep reinforcement learning Model-free method |
title | A deep reinforcement learning method to control chaos synchronization between two identical chaotic systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20reinforcement%20learning%20method%20to%20control%20chaos%20synchronization%20between%20two%20identical%20chaotic%20systems&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Cheng,%20Haoxin&rft.date=2023-09&rft.volume=174&rft.spage=113809&rft.pages=113809-&rft.artnum=113809&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2023.113809&rft_dat=%3Celsevier_cross%3ES0960077923007105%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-c9f462093823d2fa52b74e9d94dfaddd1fc3c1b98e6267f51b672ba31d33721b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |