Loading…

Stability and L∞-gain of positive fractional-order coupled differential-difference systems with unbounded time-varying delays

This work aims to research the positivity, stability, and L∞-gain of incommensurate fractional-order coupled differential-difference systems (FOCDDSs) with unbounded time-varying delays. By virtual of the Banach’s fixed point theorem, the existence and uniqueness of the solution of FOCDDs is given....

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals solitons and fractals, 2023-10, Vol.175, p.113948, Article 113948
Main Authors: Qiu, Hongling, Cao, Jinde, Liu, Heng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c218t-25d822f32de032e4e47ba0f1201c4ed21d7c40799074466f15f9786ebfc914f83
cites cdi_FETCH-LOGICAL-c218t-25d822f32de032e4e47ba0f1201c4ed21d7c40799074466f15f9786ebfc914f83
container_end_page
container_issue
container_start_page 113948
container_title Chaos, solitons and fractals
container_volume 175
creator Qiu, Hongling
Cao, Jinde
Liu, Heng
description This work aims to research the positivity, stability, and L∞-gain of incommensurate fractional-order coupled differential-difference systems (FOCDDSs) with unbounded time-varying delays. By virtual of the Banach’s fixed point theorem, the existence and uniqueness of the solution of FOCDDs is given. A necessary and sufficient criterion ensuring the positivity of delayed FOCDDSs is put forward. Then, by analyzing the monotonicity of system trajectories and constructing sample data systems, a necessary and sufficient criterion realizing the stability of positive FOCDDSs is obtained. Different from related works, there is no need to require the Lyapunov–Krasovskii function or the comparison between the counterpart with constant time delays by the proposed approach. To obtain the L∞-gain of FOCDDSs, two auxiliary systems are developed to calculate the limit of the state trajectory. Eventually, a numerical experiment is performed to verify the rationality of the results.
doi_str_mv 10.1016/j.chaos.2023.113948
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2023_113948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077923008494</els_id><sourcerecordid>S0960077923008494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-25d822f32de032e4e47ba0f1201c4ed21d7c40799074466f15f9786ebfc914f83</originalsourceid><addsrcrecordid>eNp9kD1OAzEQRi0EEiFwAhpfYIPtddbeggJF_EmRKIDa8trjxNFmHdlO0Fa0nILDcRI2BFqq0Wjmjb55CF1SMqGEVleriVnqkCaMsHJCaVlzeYRGVIqyYFKKYzQidUUKIkR9is5SWhFCKKnYCL0_Z9341uce687i-dfHZ7HQvsPB4U1IPvsdYBe1yT50ui1CtBCxCdtNCxZb7xxE6LIfRn-NAZz6lGGd8JvPS7ztmrDt7LCe_RqKnY697xbYQqv7dI5OnG4TXPzWMXq9u32ZPRTzp_vH2c28MIzKXLCplYy5klkgJQMOXDSaOMoINRwso1YYTkRdE8F5VTk6dbWQFTTO1JQ7WY5RebhrYkgpglOb6NdDFEWJ2jtUK_XjUO0dqoPDgbo-UDBE23mIKhm__9D6CCYrG_y__DdY239e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability and L∞-gain of positive fractional-order coupled differential-difference systems with unbounded time-varying delays</title><source>ScienceDirect Journals</source><creator>Qiu, Hongling ; Cao, Jinde ; Liu, Heng</creator><creatorcontrib>Qiu, Hongling ; Cao, Jinde ; Liu, Heng</creatorcontrib><description>This work aims to research the positivity, stability, and L∞-gain of incommensurate fractional-order coupled differential-difference systems (FOCDDSs) with unbounded time-varying delays. By virtual of the Banach’s fixed point theorem, the existence and uniqueness of the solution of FOCDDs is given. A necessary and sufficient criterion ensuring the positivity of delayed FOCDDSs is put forward. Then, by analyzing the monotonicity of system trajectories and constructing sample data systems, a necessary and sufficient criterion realizing the stability of positive FOCDDSs is obtained. Different from related works, there is no need to require the Lyapunov–Krasovskii function or the comparison between the counterpart with constant time delays by the proposed approach. To obtain the L∞-gain of FOCDDSs, two auxiliary systems are developed to calculate the limit of the state trajectory. Eventually, a numerical experiment is performed to verify the rationality of the results.</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2023.113948</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Coupled differential-difference system ; Fractional-order system ; Positivity ; Stability ; Unbounded delay</subject><ispartof>Chaos, solitons and fractals, 2023-10, Vol.175, p.113948, Article 113948</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-25d822f32de032e4e47ba0f1201c4ed21d7c40799074466f15f9786ebfc914f83</citedby><cites>FETCH-LOGICAL-c218t-25d822f32de032e4e47ba0f1201c4ed21d7c40799074466f15f9786ebfc914f83</cites><orcidid>0000-0003-3133-7119 ; 0000-0001-8698-8811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Qiu, Hongling</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Liu, Heng</creatorcontrib><title>Stability and L∞-gain of positive fractional-order coupled differential-difference systems with unbounded time-varying delays</title><title>Chaos, solitons and fractals</title><description>This work aims to research the positivity, stability, and L∞-gain of incommensurate fractional-order coupled differential-difference systems (FOCDDSs) with unbounded time-varying delays. By virtual of the Banach’s fixed point theorem, the existence and uniqueness of the solution of FOCDDs is given. A necessary and sufficient criterion ensuring the positivity of delayed FOCDDSs is put forward. Then, by analyzing the monotonicity of system trajectories and constructing sample data systems, a necessary and sufficient criterion realizing the stability of positive FOCDDSs is obtained. Different from related works, there is no need to require the Lyapunov–Krasovskii function or the comparison between the counterpart with constant time delays by the proposed approach. To obtain the L∞-gain of FOCDDSs, two auxiliary systems are developed to calculate the limit of the state trajectory. Eventually, a numerical experiment is performed to verify the rationality of the results.</description><subject>Coupled differential-difference system</subject><subject>Fractional-order system</subject><subject>Positivity</subject><subject>Stability</subject><subject>Unbounded delay</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1OAzEQRi0EEiFwAhpfYIPtddbeggJF_EmRKIDa8trjxNFmHdlO0Fa0nILDcRI2BFqq0Wjmjb55CF1SMqGEVleriVnqkCaMsHJCaVlzeYRGVIqyYFKKYzQidUUKIkR9is5SWhFCKKnYCL0_Z9341uce687i-dfHZ7HQvsPB4U1IPvsdYBe1yT50ui1CtBCxCdtNCxZb7xxE6LIfRn-NAZz6lGGd8JvPS7ztmrDt7LCe_RqKnY697xbYQqv7dI5OnG4TXPzWMXq9u32ZPRTzp_vH2c28MIzKXLCplYy5klkgJQMOXDSaOMoINRwso1YYTkRdE8F5VTk6dbWQFTTO1JQ7WY5RebhrYkgpglOb6NdDFEWJ2jtUK_XjUO0dqoPDgbo-UDBE23mIKhm__9D6CCYrG_y__DdY239e</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Qiu, Hongling</creator><creator>Cao, Jinde</creator><creator>Liu, Heng</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid><orcidid>https://orcid.org/0000-0001-8698-8811</orcidid></search><sort><creationdate>202310</creationdate><title>Stability and L∞-gain of positive fractional-order coupled differential-difference systems with unbounded time-varying delays</title><author>Qiu, Hongling ; Cao, Jinde ; Liu, Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-25d822f32de032e4e47ba0f1201c4ed21d7c40799074466f15f9786ebfc914f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coupled differential-difference system</topic><topic>Fractional-order system</topic><topic>Positivity</topic><topic>Stability</topic><topic>Unbounded delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Hongling</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Liu, Heng</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Hongling</au><au>Cao, Jinde</au><au>Liu, Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and L∞-gain of positive fractional-order coupled differential-difference systems with unbounded time-varying delays</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2023-10</date><risdate>2023</risdate><volume>175</volume><spage>113948</spage><pages>113948-</pages><artnum>113948</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>This work aims to research the positivity, stability, and L∞-gain of incommensurate fractional-order coupled differential-difference systems (FOCDDSs) with unbounded time-varying delays. By virtual of the Banach’s fixed point theorem, the existence and uniqueness of the solution of FOCDDs is given. A necessary and sufficient criterion ensuring the positivity of delayed FOCDDSs is put forward. Then, by analyzing the monotonicity of system trajectories and constructing sample data systems, a necessary and sufficient criterion realizing the stability of positive FOCDDSs is obtained. Different from related works, there is no need to require the Lyapunov–Krasovskii function or the comparison between the counterpart with constant time delays by the proposed approach. To obtain the L∞-gain of FOCDDSs, two auxiliary systems are developed to calculate the limit of the state trajectory. Eventually, a numerical experiment is performed to verify the rationality of the results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2023.113948</doi><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid><orcidid>https://orcid.org/0000-0001-8698-8811</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-0779
ispartof Chaos, solitons and fractals, 2023-10, Vol.175, p.113948, Article 113948
issn 0960-0779
1873-2887
language eng
recordid cdi_crossref_primary_10_1016_j_chaos_2023_113948
source ScienceDirect Journals
subjects Coupled differential-difference system
Fractional-order system
Positivity
Stability
Unbounded delay
title Stability and L∞-gain of positive fractional-order coupled differential-difference systems with unbounded time-varying delays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20L%E2%88%9E-gain%20of%20positive%20fractional-order%20coupled%20differential-difference%20systems%20with%20unbounded%20time-varying%20delays&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Qiu,%20Hongling&rft.date=2023-10&rft.volume=175&rft.spage=113948&rft.pages=113948-&rft.artnum=113948&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2023.113948&rft_dat=%3Celsevier_cross%3ES0960077923008494%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-25d822f32de032e4e47ba0f1201c4ed21d7c40799074466f15f9786ebfc914f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true