Loading…

Topological transition between disordered patterns through heating rate-induced defect emergence

Macroscopic systems can exhibit disordered patterns, such as fingerprints, vegetation patterns, and dendrites, which have topological defects that characterize the pattern richness, but their self-organization is unknown. Here, we investigate the formation mechanisms, defect emergence, and topologic...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals solitons and fractals, 2024-03, Vol.180, p.114508, Article 114508
Main Authors: Fernandez-Gonzalez, Victor, Echeverría-Alar, Sebastián, Vergara, Jorge, Hidalgo, Paulina I., Clerc, Marcel G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c253t-9bbd20a52ad1e2a9b7ff1080ac7043f2eab18ae41d6da71f473c2850823baef93
container_end_page
container_issue
container_start_page 114508
container_title Chaos, solitons and fractals
container_volume 180
creator Fernandez-Gonzalez, Victor
Echeverría-Alar, Sebastián
Vergara, Jorge
Hidalgo, Paulina I.
Clerc, Marcel G.
description Macroscopic systems can exhibit disordered patterns, such as fingerprints, vegetation patterns, and dendrites, which have topological defects that characterize the pattern richness, but their self-organization is unknown. Here, we investigate the formation mechanisms, defect emergence, and topological transition between disordered patterns driven by the heating rate. Based on a thermally driven chiral nematic liquid crystal experiment, we identified the coexistence of two different types of patterns at the same temperature but different heating rates. A supercritical transition is revealed by measuring the density of pattern defects. The pairwise correlation length also suggests this transition. Theoretically, we account for this transition based on an amplitude equation with a chiral term that is valid close to the winding/unwinding transition. Likewise, a prototype model of pattern formation exhibits a similar transition, showing that the transition is universal and could be observed in magnetic, optical, fluid, chemical, and ecological systems. •Heating rate variation reveals topological transition in liquid crystal experiment.•Theoretical validation of the transition via an amplitude equation with a chiral term.•Prototype model shows universality of observed transition.
doi_str_mv 10.1016/j.chaos.2024.114508
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2024_114508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077924000596</els_id><sourcerecordid>S0960077924000596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-9bbd20a52ad1e2a9b7ff1080ac7043f2eab18ae41d6da71f473c2850823baef93</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWzyAwljJ42TBQtU8ZIqsSlrM7HHias2rmwXxN-TUtasZjPn6t7D2C2HggOv7zaFHtDHQoCoCs6rBTRnbMYbWeaiaeQ5m0FbQw5StpfsKsYNAHCoxYx9rP3eb33vNG6zFHCMLjk_Zh2lL6IxMy76YCiQyfaYEoUxZmkI_tAP2UCY3NhnARPlbjQHPX0ZsqRTRjsKPY2artmFxW2km787Z-9Pj-vlS756e35dPqxyLRZlytuuMwJwIdBwEth20loODaCWUJVWEHa8Qaq4qQ1KbitZatFMO0XZIdm2nLPylKuDjzGQVfvgdhi-FQd1lKQ26leSOkpSJ0kTdX-iaKr26SioqN2xtnFhmqGMd__yP2zydCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Topological transition between disordered patterns through heating rate-induced defect emergence</title><source>Elsevier</source><creator>Fernandez-Gonzalez, Victor ; Echeverría-Alar, Sebastián ; Vergara, Jorge ; Hidalgo, Paulina I. ; Clerc, Marcel G.</creator><creatorcontrib>Fernandez-Gonzalez, Victor ; Echeverría-Alar, Sebastián ; Vergara, Jorge ; Hidalgo, Paulina I. ; Clerc, Marcel G.</creatorcontrib><description>Macroscopic systems can exhibit disordered patterns, such as fingerprints, vegetation patterns, and dendrites, which have topological defects that characterize the pattern richness, but their self-organization is unknown. Here, we investigate the formation mechanisms, defect emergence, and topological transition between disordered patterns driven by the heating rate. Based on a thermally driven chiral nematic liquid crystal experiment, we identified the coexistence of two different types of patterns at the same temperature but different heating rates. A supercritical transition is revealed by measuring the density of pattern defects. The pairwise correlation length also suggests this transition. Theoretically, we account for this transition based on an amplitude equation with a chiral term that is valid close to the winding/unwinding transition. Likewise, a prototype model of pattern formation exhibits a similar transition, showing that the transition is universal and could be observed in magnetic, optical, fluid, chemical, and ecological systems. •Heating rate variation reveals topological transition in liquid crystal experiment.•Theoretical validation of the transition via an amplitude equation with a chiral term.•Prototype model shows universality of observed transition.</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2024.114508</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chirality ; Liquid crystals ; Nonlinear dynamics ; Pattern formation ; Process dependency ; Topological transitions</subject><ispartof>Chaos, solitons and fractals, 2024-03, Vol.180, p.114508, Article 114508</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c253t-9bbd20a52ad1e2a9b7ff1080ac7043f2eab18ae41d6da71f473c2850823baef93</cites><orcidid>0000-0002-8006-0729 ; 0000-0001-7417-4925 ; 0000-0002-6652-6131 ; 0000-0002-6668-9950 ; 0000-0001-7051-3918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Fernandez-Gonzalez, Victor</creatorcontrib><creatorcontrib>Echeverría-Alar, Sebastián</creatorcontrib><creatorcontrib>Vergara, Jorge</creatorcontrib><creatorcontrib>Hidalgo, Paulina I.</creatorcontrib><creatorcontrib>Clerc, Marcel G.</creatorcontrib><title>Topological transition between disordered patterns through heating rate-induced defect emergence</title><title>Chaos, solitons and fractals</title><description>Macroscopic systems can exhibit disordered patterns, such as fingerprints, vegetation patterns, and dendrites, which have topological defects that characterize the pattern richness, but their self-organization is unknown. Here, we investigate the formation mechanisms, defect emergence, and topological transition between disordered patterns driven by the heating rate. Based on a thermally driven chiral nematic liquid crystal experiment, we identified the coexistence of two different types of patterns at the same temperature but different heating rates. A supercritical transition is revealed by measuring the density of pattern defects. The pairwise correlation length also suggests this transition. Theoretically, we account for this transition based on an amplitude equation with a chiral term that is valid close to the winding/unwinding transition. Likewise, a prototype model of pattern formation exhibits a similar transition, showing that the transition is universal and could be observed in magnetic, optical, fluid, chemical, and ecological systems. •Heating rate variation reveals topological transition in liquid crystal experiment.•Theoretical validation of the transition via an amplitude equation with a chiral term.•Prototype model shows universality of observed transition.</description><subject>Chirality</subject><subject>Liquid crystals</subject><subject>Nonlinear dynamics</subject><subject>Pattern formation</subject><subject>Process dependency</subject><subject>Topological transitions</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWzyAwljJ42TBQtU8ZIqsSlrM7HHias2rmwXxN-TUtasZjPn6t7D2C2HggOv7zaFHtDHQoCoCs6rBTRnbMYbWeaiaeQ5m0FbQw5StpfsKsYNAHCoxYx9rP3eb33vNG6zFHCMLjk_Zh2lL6IxMy76YCiQyfaYEoUxZmkI_tAP2UCY3NhnARPlbjQHPX0ZsqRTRjsKPY2artmFxW2km787Z-9Pj-vlS756e35dPqxyLRZlytuuMwJwIdBwEth20loODaCWUJVWEHa8Qaq4qQ1KbitZatFMO0XZIdm2nLPylKuDjzGQVfvgdhi-FQd1lKQ26leSOkpSJ0kTdX-iaKr26SioqN2xtnFhmqGMd__yP2zydCk</recordid><startdate>202403</startdate><enddate>202403</enddate><creator>Fernandez-Gonzalez, Victor</creator><creator>Echeverría-Alar, Sebastián</creator><creator>Vergara, Jorge</creator><creator>Hidalgo, Paulina I.</creator><creator>Clerc, Marcel G.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8006-0729</orcidid><orcidid>https://orcid.org/0000-0001-7417-4925</orcidid><orcidid>https://orcid.org/0000-0002-6652-6131</orcidid><orcidid>https://orcid.org/0000-0002-6668-9950</orcidid><orcidid>https://orcid.org/0000-0001-7051-3918</orcidid></search><sort><creationdate>202403</creationdate><title>Topological transition between disordered patterns through heating rate-induced defect emergence</title><author>Fernandez-Gonzalez, Victor ; Echeverría-Alar, Sebastián ; Vergara, Jorge ; Hidalgo, Paulina I. ; Clerc, Marcel G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-9bbd20a52ad1e2a9b7ff1080ac7043f2eab18ae41d6da71f473c2850823baef93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chirality</topic><topic>Liquid crystals</topic><topic>Nonlinear dynamics</topic><topic>Pattern formation</topic><topic>Process dependency</topic><topic>Topological transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez-Gonzalez, Victor</creatorcontrib><creatorcontrib>Echeverría-Alar, Sebastián</creatorcontrib><creatorcontrib>Vergara, Jorge</creatorcontrib><creatorcontrib>Hidalgo, Paulina I.</creatorcontrib><creatorcontrib>Clerc, Marcel G.</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez-Gonzalez, Victor</au><au>Echeverría-Alar, Sebastián</au><au>Vergara, Jorge</au><au>Hidalgo, Paulina I.</au><au>Clerc, Marcel G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological transition between disordered patterns through heating rate-induced defect emergence</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2024-03</date><risdate>2024</risdate><volume>180</volume><spage>114508</spage><pages>114508-</pages><artnum>114508</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>Macroscopic systems can exhibit disordered patterns, such as fingerprints, vegetation patterns, and dendrites, which have topological defects that characterize the pattern richness, but their self-organization is unknown. Here, we investigate the formation mechanisms, defect emergence, and topological transition between disordered patterns driven by the heating rate. Based on a thermally driven chiral nematic liquid crystal experiment, we identified the coexistence of two different types of patterns at the same temperature but different heating rates. A supercritical transition is revealed by measuring the density of pattern defects. The pairwise correlation length also suggests this transition. Theoretically, we account for this transition based on an amplitude equation with a chiral term that is valid close to the winding/unwinding transition. Likewise, a prototype model of pattern formation exhibits a similar transition, showing that the transition is universal and could be observed in magnetic, optical, fluid, chemical, and ecological systems. •Heating rate variation reveals topological transition in liquid crystal experiment.•Theoretical validation of the transition via an amplitude equation with a chiral term.•Prototype model shows universality of observed transition.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2024.114508</doi><orcidid>https://orcid.org/0000-0002-8006-0729</orcidid><orcidid>https://orcid.org/0000-0001-7417-4925</orcidid><orcidid>https://orcid.org/0000-0002-6652-6131</orcidid><orcidid>https://orcid.org/0000-0002-6668-9950</orcidid><orcidid>https://orcid.org/0000-0001-7051-3918</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-0779
ispartof Chaos, solitons and fractals, 2024-03, Vol.180, p.114508, Article 114508
issn 0960-0779
1873-2887
language eng
recordid cdi_crossref_primary_10_1016_j_chaos_2024_114508
source Elsevier
subjects Chirality
Liquid crystals
Nonlinear dynamics
Pattern formation
Process dependency
Topological transitions
title Topological transition between disordered patterns through heating rate-induced defect emergence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20transition%20between%20disordered%20patterns%20through%20heating%20rate-induced%20defect%20emergence&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Fernandez-Gonzalez,%20Victor&rft.date=2024-03&rft.volume=180&rft.spage=114508&rft.pages=114508-&rft.artnum=114508&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2024.114508&rft_dat=%3Celsevier_cross%3ES0960077924000596%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c253t-9bbd20a52ad1e2a9b7ff1080ac7043f2eab18ae41d6da71f473c2850823baef93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true