Loading…

Vector multipole solitons of fractional-order coupled saturable nonlinear Schrödinger equation

Three kinds of vector multipole solitons of fractional coupled saturable nonlinear Schrödinger equation are reported, including fractional dipole-dipole, dipole-tripole and tripole-dipole vector soliton solutions. Firstly, their existence domains, which are modulated by potential function parameters...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals solitons and fractals, 2024-09, Vol.186, p.115230, Article 115230
Main Authors: Xu, Tong-Zhen, Liu, Jin-Hao, Wang, Yue-Yue, Dai, Chao-Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c980-ee8bd76c5f92140852de482d17d08e4917a84b6eefa6e97d4185d8d48e4f4cfc3
container_end_page
container_issue
container_start_page 115230
container_title Chaos, solitons and fractals
container_volume 186
creator Xu, Tong-Zhen
Liu, Jin-Hao
Wang, Yue-Yue
Dai, Chao-Qing
description Three kinds of vector multipole solitons of fractional coupled saturable nonlinear Schrödinger equation are reported, including fractional dipole-dipole, dipole-tripole and tripole-dipole vector soliton solutions. Firstly, their existence domains, which are modulated by potential function parameters, are constructed in a certain interval. Secondly, the stable regions of three kinds of vector multipole solitons, which are modulated by the soliton power of each component, are found. The properties of solitons are explored through these existence and stability domains. Finally, the stability of three kinds of fractional vector multipole solitons is verified by the numerical evolution. Compared with the integer-order results, there are differences in the existence and stable regions of soliton solutions, and the Lévy index affects the existence and stability of vector multipole solitons. •Existence domains of fractional vector multipole solitons are given.•Stable regions of fractional vector multipole solitons are found.•Stability of fractional vector multipole solitons is verified by the numerical evolution.
doi_str_mv 10.1016/j.chaos.2024.115230
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2024_115230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077924007823</els_id><sourcerecordid>S0960077924007823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c980-ee8bd76c5f92140852de482d17d08e4917a84b6eefa6e97d4185d8d48e4f4cfc3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhb0AiVI4ARtfIGHsOImzYIEq_qRKLKjYWq49pq7cuNgJEhfjAlyMlLJm9RbzvtHTR8gVg5IBa663pdnomEsOXJSM1byCEzKDroEC2rY7I-c5bwGAQcNnRL2iGWKiuzEMfh8D0hyDH2KfaXTUJW0GH3sdipgsJmriuA9oadbDmPR6qvexD75HneiL2aTvL-v7t6mI76M-kBfk1OmQ8fIv52R1f7daPBbL54enxe2yMJ2EAlGubduY2nWcCZA1tygkt6y1IFF0rNVSrBtEpxvsWiuYrK20Yro5YZyp5qQ6vjUp5pzQqX3yO50-FQN10KK26leLOmhRRy0TdXOkcFr24TGpbDz2Bq1PkxZlo_-X_wH-FHIa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vector multipole solitons of fractional-order coupled saturable nonlinear Schrödinger equation</title><source>ScienceDirect Freedom Collection</source><creator>Xu, Tong-Zhen ; Liu, Jin-Hao ; Wang, Yue-Yue ; Dai, Chao-Qing</creator><creatorcontrib>Xu, Tong-Zhen ; Liu, Jin-Hao ; Wang, Yue-Yue ; Dai, Chao-Qing</creatorcontrib><description>Three kinds of vector multipole solitons of fractional coupled saturable nonlinear Schrödinger equation are reported, including fractional dipole-dipole, dipole-tripole and tripole-dipole vector soliton solutions. Firstly, their existence domains, which are modulated by potential function parameters, are constructed in a certain interval. Secondly, the stable regions of three kinds of vector multipole solitons, which are modulated by the soliton power of each component, are found. The properties of solitons are explored through these existence and stability domains. Finally, the stability of three kinds of fractional vector multipole solitons is verified by the numerical evolution. Compared with the integer-order results, there are differences in the existence and stable regions of soliton solutions, and the Lévy index affects the existence and stability of vector multipole solitons. •Existence domains of fractional vector multipole solitons are given.•Stable regions of fractional vector multipole solitons are found.•Stability of fractional vector multipole solitons is verified by the numerical evolution.</description><identifier>ISSN: 0960-0779</identifier><identifier>DOI: 10.1016/j.chaos.2024.115230</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Existence ; Fractional-order ; Saturable nonlinearity ; Stability ; Vector soliton</subject><ispartof>Chaos, solitons and fractals, 2024-09, Vol.186, p.115230, Article 115230</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c980-ee8bd76c5f92140852de482d17d08e4917a84b6eefa6e97d4185d8d48e4f4cfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xu, Tong-Zhen</creatorcontrib><creatorcontrib>Liu, Jin-Hao</creatorcontrib><creatorcontrib>Wang, Yue-Yue</creatorcontrib><creatorcontrib>Dai, Chao-Qing</creatorcontrib><title>Vector multipole solitons of fractional-order coupled saturable nonlinear Schrödinger equation</title><title>Chaos, solitons and fractals</title><description>Three kinds of vector multipole solitons of fractional coupled saturable nonlinear Schrödinger equation are reported, including fractional dipole-dipole, dipole-tripole and tripole-dipole vector soliton solutions. Firstly, their existence domains, which are modulated by potential function parameters, are constructed in a certain interval. Secondly, the stable regions of three kinds of vector multipole solitons, which are modulated by the soliton power of each component, are found. The properties of solitons are explored through these existence and stability domains. Finally, the stability of three kinds of fractional vector multipole solitons is verified by the numerical evolution. Compared with the integer-order results, there are differences in the existence and stable regions of soliton solutions, and the Lévy index affects the existence and stability of vector multipole solitons. •Existence domains of fractional vector multipole solitons are given.•Stable regions of fractional vector multipole solitons are found.•Stability of fractional vector multipole solitons is verified by the numerical evolution.</description><subject>Existence</subject><subject>Fractional-order</subject><subject>Saturable nonlinearity</subject><subject>Stability</subject><subject>Vector soliton</subject><issn>0960-0779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhb0AiVI4ARtfIGHsOImzYIEq_qRKLKjYWq49pq7cuNgJEhfjAlyMlLJm9RbzvtHTR8gVg5IBa663pdnomEsOXJSM1byCEzKDroEC2rY7I-c5bwGAQcNnRL2iGWKiuzEMfh8D0hyDH2KfaXTUJW0GH3sdipgsJmriuA9oadbDmPR6qvexD75HneiL2aTvL-v7t6mI76M-kBfk1OmQ8fIv52R1f7daPBbL54enxe2yMJ2EAlGubduY2nWcCZA1tygkt6y1IFF0rNVSrBtEpxvsWiuYrK20Yro5YZyp5qQ6vjUp5pzQqX3yO50-FQN10KK26leLOmhRRy0TdXOkcFr24TGpbDz2Bq1PkxZlo_-X_wH-FHIa</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Xu, Tong-Zhen</creator><creator>Liu, Jin-Hao</creator><creator>Wang, Yue-Yue</creator><creator>Dai, Chao-Qing</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202409</creationdate><title>Vector multipole solitons of fractional-order coupled saturable nonlinear Schrödinger equation</title><author>Xu, Tong-Zhen ; Liu, Jin-Hao ; Wang, Yue-Yue ; Dai, Chao-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c980-ee8bd76c5f92140852de482d17d08e4917a84b6eefa6e97d4185d8d48e4f4cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Existence</topic><topic>Fractional-order</topic><topic>Saturable nonlinearity</topic><topic>Stability</topic><topic>Vector soliton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Tong-Zhen</creatorcontrib><creatorcontrib>Liu, Jin-Hao</creatorcontrib><creatorcontrib>Wang, Yue-Yue</creatorcontrib><creatorcontrib>Dai, Chao-Qing</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Tong-Zhen</au><au>Liu, Jin-Hao</au><au>Wang, Yue-Yue</au><au>Dai, Chao-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vector multipole solitons of fractional-order coupled saturable nonlinear Schrödinger equation</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2024-09</date><risdate>2024</risdate><volume>186</volume><spage>115230</spage><pages>115230-</pages><artnum>115230</artnum><issn>0960-0779</issn><abstract>Three kinds of vector multipole solitons of fractional coupled saturable nonlinear Schrödinger equation are reported, including fractional dipole-dipole, dipole-tripole and tripole-dipole vector soliton solutions. Firstly, their existence domains, which are modulated by potential function parameters, are constructed in a certain interval. Secondly, the stable regions of three kinds of vector multipole solitons, which are modulated by the soliton power of each component, are found. The properties of solitons are explored through these existence and stability domains. Finally, the stability of three kinds of fractional vector multipole solitons is verified by the numerical evolution. Compared with the integer-order results, there are differences in the existence and stable regions of soliton solutions, and the Lévy index affects the existence and stability of vector multipole solitons. •Existence domains of fractional vector multipole solitons are given.•Stable regions of fractional vector multipole solitons are found.•Stability of fractional vector multipole solitons is verified by the numerical evolution.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2024.115230</doi></addata></record>
fulltext fulltext
identifier ISSN: 0960-0779
ispartof Chaos, solitons and fractals, 2024-09, Vol.186, p.115230, Article 115230
issn 0960-0779
language eng
recordid cdi_crossref_primary_10_1016_j_chaos_2024_115230
source ScienceDirect Freedom Collection
subjects Existence
Fractional-order
Saturable nonlinearity
Stability
Vector soliton
title Vector multipole solitons of fractional-order coupled saturable nonlinear Schrödinger equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vector%20multipole%20solitons%20of%20fractional-order%20coupled%20saturable%20nonlinear%20Schr%C3%B6dinger%20equation&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Xu,%20Tong-Zhen&rft.date=2024-09&rft.volume=186&rft.spage=115230&rft.pages=115230-&rft.artnum=115230&rft.issn=0960-0779&rft_id=info:doi/10.1016/j.chaos.2024.115230&rft_dat=%3Celsevier_cross%3ES0960077924007823%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c980-ee8bd76c5f92140852de482d17d08e4917a84b6eefa6e97d4185d8d48e4f4cfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true