Loading…
Vector multipole solitons of fractional-order coupled saturable nonlinear Schrödinger equation
Three kinds of vector multipole solitons of fractional coupled saturable nonlinear Schrödinger equation are reported, including fractional dipole-dipole, dipole-tripole and tripole-dipole vector soliton solutions. Firstly, their existence domains, which are modulated by potential function parameters...
Saved in:
Published in: | Chaos, solitons and fractals solitons and fractals, 2024-09, Vol.186, p.115230, Article 115230 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c980-ee8bd76c5f92140852de482d17d08e4917a84b6eefa6e97d4185d8d48e4f4cfc3 |
container_end_page | |
container_issue | |
container_start_page | 115230 |
container_title | Chaos, solitons and fractals |
container_volume | 186 |
creator | Xu, Tong-Zhen Liu, Jin-Hao Wang, Yue-Yue Dai, Chao-Qing |
description | Three kinds of vector multipole solitons of fractional coupled saturable nonlinear Schrödinger equation are reported, including fractional dipole-dipole, dipole-tripole and tripole-dipole vector soliton solutions. Firstly, their existence domains, which are modulated by potential function parameters, are constructed in a certain interval. Secondly, the stable regions of three kinds of vector multipole solitons, which are modulated by the soliton power of each component, are found. The properties of solitons are explored through these existence and stability domains. Finally, the stability of three kinds of fractional vector multipole solitons is verified by the numerical evolution. Compared with the integer-order results, there are differences in the existence and stable regions of soliton solutions, and the Lévy index affects the existence and stability of vector multipole solitons.
•Existence domains of fractional vector multipole solitons are given.•Stable regions of fractional vector multipole solitons are found.•Stability of fractional vector multipole solitons is verified by the numerical evolution. |
doi_str_mv | 10.1016/j.chaos.2024.115230 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2024_115230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077924007823</els_id><sourcerecordid>S0960077924007823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c980-ee8bd76c5f92140852de482d17d08e4917a84b6eefa6e97d4185d8d48e4f4cfc3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhb0AiVI4ARtfIGHsOImzYIEq_qRKLKjYWq49pq7cuNgJEhfjAlyMlLJm9RbzvtHTR8gVg5IBa663pdnomEsOXJSM1byCEzKDroEC2rY7I-c5bwGAQcNnRL2iGWKiuzEMfh8D0hyDH2KfaXTUJW0GH3sdipgsJmriuA9oadbDmPR6qvexD75HneiL2aTvL-v7t6mI76M-kBfk1OmQ8fIv52R1f7daPBbL54enxe2yMJ2EAlGubduY2nWcCZA1tygkt6y1IFF0rNVSrBtEpxvsWiuYrK20Yro5YZyp5qQ6vjUp5pzQqX3yO50-FQN10KK26leLOmhRRy0TdXOkcFr24TGpbDz2Bq1PkxZlo_-X_wH-FHIa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vector multipole solitons of fractional-order coupled saturable nonlinear Schrödinger equation</title><source>ScienceDirect Freedom Collection</source><creator>Xu, Tong-Zhen ; Liu, Jin-Hao ; Wang, Yue-Yue ; Dai, Chao-Qing</creator><creatorcontrib>Xu, Tong-Zhen ; Liu, Jin-Hao ; Wang, Yue-Yue ; Dai, Chao-Qing</creatorcontrib><description>Three kinds of vector multipole solitons of fractional coupled saturable nonlinear Schrödinger equation are reported, including fractional dipole-dipole, dipole-tripole and tripole-dipole vector soliton solutions. Firstly, their existence domains, which are modulated by potential function parameters, are constructed in a certain interval. Secondly, the stable regions of three kinds of vector multipole solitons, which are modulated by the soliton power of each component, are found. The properties of solitons are explored through these existence and stability domains. Finally, the stability of three kinds of fractional vector multipole solitons is verified by the numerical evolution. Compared with the integer-order results, there are differences in the existence and stable regions of soliton solutions, and the Lévy index affects the existence and stability of vector multipole solitons.
•Existence domains of fractional vector multipole solitons are given.•Stable regions of fractional vector multipole solitons are found.•Stability of fractional vector multipole solitons is verified by the numerical evolution.</description><identifier>ISSN: 0960-0779</identifier><identifier>DOI: 10.1016/j.chaos.2024.115230</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Existence ; Fractional-order ; Saturable nonlinearity ; Stability ; Vector soliton</subject><ispartof>Chaos, solitons and fractals, 2024-09, Vol.186, p.115230, Article 115230</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c980-ee8bd76c5f92140852de482d17d08e4917a84b6eefa6e97d4185d8d48e4f4cfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Xu, Tong-Zhen</creatorcontrib><creatorcontrib>Liu, Jin-Hao</creatorcontrib><creatorcontrib>Wang, Yue-Yue</creatorcontrib><creatorcontrib>Dai, Chao-Qing</creatorcontrib><title>Vector multipole solitons of fractional-order coupled saturable nonlinear Schrödinger equation</title><title>Chaos, solitons and fractals</title><description>Three kinds of vector multipole solitons of fractional coupled saturable nonlinear Schrödinger equation are reported, including fractional dipole-dipole, dipole-tripole and tripole-dipole vector soliton solutions. Firstly, their existence domains, which are modulated by potential function parameters, are constructed in a certain interval. Secondly, the stable regions of three kinds of vector multipole solitons, which are modulated by the soliton power of each component, are found. The properties of solitons are explored through these existence and stability domains. Finally, the stability of three kinds of fractional vector multipole solitons is verified by the numerical evolution. Compared with the integer-order results, there are differences in the existence and stable regions of soliton solutions, and the Lévy index affects the existence and stability of vector multipole solitons.
•Existence domains of fractional vector multipole solitons are given.•Stable regions of fractional vector multipole solitons are found.•Stability of fractional vector multipole solitons is verified by the numerical evolution.</description><subject>Existence</subject><subject>Fractional-order</subject><subject>Saturable nonlinearity</subject><subject>Stability</subject><subject>Vector soliton</subject><issn>0960-0779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhb0AiVI4ARtfIGHsOImzYIEq_qRKLKjYWq49pq7cuNgJEhfjAlyMlLJm9RbzvtHTR8gVg5IBa663pdnomEsOXJSM1byCEzKDroEC2rY7I-c5bwGAQcNnRL2iGWKiuzEMfh8D0hyDH2KfaXTUJW0GH3sdipgsJmriuA9oadbDmPR6qvexD75HneiL2aTvL-v7t6mI76M-kBfk1OmQ8fIv52R1f7daPBbL54enxe2yMJ2EAlGubduY2nWcCZA1tygkt6y1IFF0rNVSrBtEpxvsWiuYrK20Yro5YZyp5qQ6vjUp5pzQqX3yO50-FQN10KK26leLOmhRRy0TdXOkcFr24TGpbDz2Bq1PkxZlo_-X_wH-FHIa</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Xu, Tong-Zhen</creator><creator>Liu, Jin-Hao</creator><creator>Wang, Yue-Yue</creator><creator>Dai, Chao-Qing</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202409</creationdate><title>Vector multipole solitons of fractional-order coupled saturable nonlinear Schrödinger equation</title><author>Xu, Tong-Zhen ; Liu, Jin-Hao ; Wang, Yue-Yue ; Dai, Chao-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c980-ee8bd76c5f92140852de482d17d08e4917a84b6eefa6e97d4185d8d48e4f4cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Existence</topic><topic>Fractional-order</topic><topic>Saturable nonlinearity</topic><topic>Stability</topic><topic>Vector soliton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Tong-Zhen</creatorcontrib><creatorcontrib>Liu, Jin-Hao</creatorcontrib><creatorcontrib>Wang, Yue-Yue</creatorcontrib><creatorcontrib>Dai, Chao-Qing</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Tong-Zhen</au><au>Liu, Jin-Hao</au><au>Wang, Yue-Yue</au><au>Dai, Chao-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vector multipole solitons of fractional-order coupled saturable nonlinear Schrödinger equation</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2024-09</date><risdate>2024</risdate><volume>186</volume><spage>115230</spage><pages>115230-</pages><artnum>115230</artnum><issn>0960-0779</issn><abstract>Three kinds of vector multipole solitons of fractional coupled saturable nonlinear Schrödinger equation are reported, including fractional dipole-dipole, dipole-tripole and tripole-dipole vector soliton solutions. Firstly, their existence domains, which are modulated by potential function parameters, are constructed in a certain interval. Secondly, the stable regions of three kinds of vector multipole solitons, which are modulated by the soliton power of each component, are found. The properties of solitons are explored through these existence and stability domains. Finally, the stability of three kinds of fractional vector multipole solitons is verified by the numerical evolution. Compared with the integer-order results, there are differences in the existence and stable regions of soliton solutions, and the Lévy index affects the existence and stability of vector multipole solitons.
•Existence domains of fractional vector multipole solitons are given.•Stable regions of fractional vector multipole solitons are found.•Stability of fractional vector multipole solitons is verified by the numerical evolution.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2024.115230</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-0779 |
ispartof | Chaos, solitons and fractals, 2024-09, Vol.186, p.115230, Article 115230 |
issn | 0960-0779 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_chaos_2024_115230 |
source | ScienceDirect Freedom Collection |
subjects | Existence Fractional-order Saturable nonlinearity Stability Vector soliton |
title | Vector multipole solitons of fractional-order coupled saturable nonlinear Schrödinger equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vector%20multipole%20solitons%20of%20fractional-order%20coupled%20saturable%20nonlinear%20Schr%C3%B6dinger%20equation&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=Xu,%20Tong-Zhen&rft.date=2024-09&rft.volume=186&rft.spage=115230&rft.pages=115230-&rft.artnum=115230&rft.issn=0960-0779&rft_id=info:doi/10.1016/j.chaos.2024.115230&rft_dat=%3Celsevier_cross%3ES0960077924007823%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c980-ee8bd76c5f92140852de482d17d08e4917a84b6eefa6e97d4185d8d48e4f4cfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |