Loading…

Symmetry breaking and dynamics of solitons in regular and parity-time-symmetric nonlinear coupler supported by fractional dispersion

The present work investigates symmetry breaking in dual-core couplers with fractional dispersion, cubic self-focusing, gain and loss effects acting in each core, modeled by coupled fractional nonlinear Schrödinger equations with Lévy index. We demonstrate that spontaneous symmetry breaking (SSB) bif...

Full description

Saved in:
Bibliographic Details
Published in:Chaos, solitons and fractals solitons and fractals, 2024-09, Vol.186, p.115258, Article 115258
Main Authors: He, Xueqing, Zhai, Yuanbo, Cai, Qiang, Li, Rujiang, Li, Pengfei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c183t-7b24de59b69d4a6ae29845e414ffbded65a8ef2e88e044991a468bee53b349d03
container_end_page
container_issue
container_start_page 115258
container_title Chaos, solitons and fractals
container_volume 186
creator He, Xueqing
Zhai, Yuanbo
Cai, Qiang
Li, Rujiang
Li, Pengfei
description The present work investigates symmetry breaking in dual-core couplers with fractional dispersion, cubic self-focusing, gain and loss effects acting in each core, modeled by coupled fractional nonlinear Schrödinger equations with Lévy index. We demonstrate that spontaneous symmetry breaking (SSB) bifurcations of solitons in the regular and parity-time (PT) symmetric fractional coupler with fractional dispersion and cubic nonlinearity. Two types of the asymmetric solutions emerge by way of symmetry breaking bifurcations. By dint of numerical calculations, we identify the symmetry breaking phase transitions of both the first and second kinds (alias sub- and supercritical bifurcations) for symmetric and antisymmetric solitons in the regular fractional couplers. For PT-symmetric fractional nonlinear coupler, the branches of asymmetry solutions are existing with complex conjugate propagation constants (alias ghost states). Moreover, we investigate the dependence of Lévy index on the symmetry breaking of solitons in detail. The stabilities and evolution of the solitons and asymmetric solutions are explored. •Symmetric, antisymmetric and asymmetric solitons are predicted in fractional coupler.•Ghost states are predicted in PT-symmetric fractional coupler.•The subcritical and supercritical bifurcations can exist in fractional coupler.•The stability boundary and dynamic characteristics have been delineated.
doi_str_mv 10.1016/j.chaos.2024.115258
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chaos_2024_115258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960077924008105</els_id><sourcerecordid>S0960077924008105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c183t-7b24de59b69d4a6ae29845e414ffbded65a8ef2e88e044991a468bee53b349d03</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4-gZu8QGuSpm26cCGDfyC4UNchTW7HjG1SkozQvQ9uZ-ra1eXA-Q6XD6FrSnJKaHWzy_Wn8jFnhPGc0pKV4gStqKiLjAlRn6IVaSqSkbpuztFFjDtCCCUVW6Gft2kYIIUJtwHUl3VbrJzBZnJqsDpi3-Hoe5u8i9g6HGC771U4dkYVbJqyZAfI4rJiNXbe9dbB3NF-P_YQcNyPow8JDG4n3AWlk_VO9djYOEKIc7hEZ53qI1z93TX6eLh_3zxlL6-Pz5u7l0xTUaSsbhk3UDZt1RiuKgWsEbwETnnXtQZMVSoBHQMhgHDeNFTxSrQAZdEWvDGkWKNi2dXBxxigk2OwgwqTpEQeRMqdPIqUB5FyETlTtwsF82vfFoKM2oLTYGwAnaTx9l_-F1PPgeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Symmetry breaking and dynamics of solitons in regular and parity-time-symmetric nonlinear coupler supported by fractional dispersion</title><source>ScienceDirect Journals</source><creator>He, Xueqing ; Zhai, Yuanbo ; Cai, Qiang ; Li, Rujiang ; Li, Pengfei</creator><creatorcontrib>He, Xueqing ; Zhai, Yuanbo ; Cai, Qiang ; Li, Rujiang ; Li, Pengfei</creatorcontrib><description>The present work investigates symmetry breaking in dual-core couplers with fractional dispersion, cubic self-focusing, gain and loss effects acting in each core, modeled by coupled fractional nonlinear Schrödinger equations with Lévy index. We demonstrate that spontaneous symmetry breaking (SSB) bifurcations of solitons in the regular and parity-time (PT) symmetric fractional coupler with fractional dispersion and cubic nonlinearity. Two types of the asymmetric solutions emerge by way of symmetry breaking bifurcations. By dint of numerical calculations, we identify the symmetry breaking phase transitions of both the first and second kinds (alias sub- and supercritical bifurcations) for symmetric and antisymmetric solitons in the regular fractional couplers. For PT-symmetric fractional nonlinear coupler, the branches of asymmetry solutions are existing with complex conjugate propagation constants (alias ghost states). Moreover, we investigate the dependence of Lévy index on the symmetry breaking of solitons in detail. The stabilities and evolution of the solitons and asymmetric solutions are explored. •Symmetric, antisymmetric and asymmetric solitons are predicted in fractional coupler.•Ghost states are predicted in PT-symmetric fractional coupler.•The subcritical and supercritical bifurcations can exist in fractional coupler.•The stability boundary and dynamic characteristics have been delineated.</description><identifier>ISSN: 0960-0779</identifier><identifier>EISSN: 1873-2887</identifier><identifier>DOI: 10.1016/j.chaos.2024.115258</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fractional dispersion ; Ghost state ; Soliton dynamics ; Subcritical bifurcation ; Supercritical bifurcation</subject><ispartof>Chaos, solitons and fractals, 2024-09, Vol.186, p.115258, Article 115258</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c183t-7b24de59b69d4a6ae29845e414ffbded65a8ef2e88e044991a468bee53b349d03</cites><orcidid>0000-0002-5489-0702 ; 0000-0002-0010-4059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>He, Xueqing</creatorcontrib><creatorcontrib>Zhai, Yuanbo</creatorcontrib><creatorcontrib>Cai, Qiang</creatorcontrib><creatorcontrib>Li, Rujiang</creatorcontrib><creatorcontrib>Li, Pengfei</creatorcontrib><title>Symmetry breaking and dynamics of solitons in regular and parity-time-symmetric nonlinear coupler supported by fractional dispersion</title><title>Chaos, solitons and fractals</title><description>The present work investigates symmetry breaking in dual-core couplers with fractional dispersion, cubic self-focusing, gain and loss effects acting in each core, modeled by coupled fractional nonlinear Schrödinger equations with Lévy index. We demonstrate that spontaneous symmetry breaking (SSB) bifurcations of solitons in the regular and parity-time (PT) symmetric fractional coupler with fractional dispersion and cubic nonlinearity. Two types of the asymmetric solutions emerge by way of symmetry breaking bifurcations. By dint of numerical calculations, we identify the symmetry breaking phase transitions of both the first and second kinds (alias sub- and supercritical bifurcations) for symmetric and antisymmetric solitons in the regular fractional couplers. For PT-symmetric fractional nonlinear coupler, the branches of asymmetry solutions are existing with complex conjugate propagation constants (alias ghost states). Moreover, we investigate the dependence of Lévy index on the symmetry breaking of solitons in detail. The stabilities and evolution of the solitons and asymmetric solutions are explored. •Symmetric, antisymmetric and asymmetric solitons are predicted in fractional coupler.•Ghost states are predicted in PT-symmetric fractional coupler.•The subcritical and supercritical bifurcations can exist in fractional coupler.•The stability boundary and dynamic characteristics have been delineated.</description><subject>Fractional dispersion</subject><subject>Ghost state</subject><subject>Soliton dynamics</subject><subject>Subcritical bifurcation</subject><subject>Supercritical bifurcation</subject><issn>0960-0779</issn><issn>1873-2887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI4-gZu8QGuSpm26cCGDfyC4UNchTW7HjG1SkozQvQ9uZ-ra1eXA-Q6XD6FrSnJKaHWzy_Wn8jFnhPGc0pKV4gStqKiLjAlRn6IVaSqSkbpuztFFjDtCCCUVW6Gft2kYIIUJtwHUl3VbrJzBZnJqsDpi3-Hoe5u8i9g6HGC771U4dkYVbJqyZAfI4rJiNXbe9dbB3NF-P_YQcNyPow8JDG4n3AWlk_VO9djYOEKIc7hEZ53qI1z93TX6eLh_3zxlL6-Pz5u7l0xTUaSsbhk3UDZt1RiuKgWsEbwETnnXtQZMVSoBHQMhgHDeNFTxSrQAZdEWvDGkWKNi2dXBxxigk2OwgwqTpEQeRMqdPIqUB5FyETlTtwsF82vfFoKM2oLTYGwAnaTx9l_-F1PPgeg</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>He, Xueqing</creator><creator>Zhai, Yuanbo</creator><creator>Cai, Qiang</creator><creator>Li, Rujiang</creator><creator>Li, Pengfei</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5489-0702</orcidid><orcidid>https://orcid.org/0000-0002-0010-4059</orcidid></search><sort><creationdate>202409</creationdate><title>Symmetry breaking and dynamics of solitons in regular and parity-time-symmetric nonlinear coupler supported by fractional dispersion</title><author>He, Xueqing ; Zhai, Yuanbo ; Cai, Qiang ; Li, Rujiang ; Li, Pengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c183t-7b24de59b69d4a6ae29845e414ffbded65a8ef2e88e044991a468bee53b349d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fractional dispersion</topic><topic>Ghost state</topic><topic>Soliton dynamics</topic><topic>Subcritical bifurcation</topic><topic>Supercritical bifurcation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xueqing</creatorcontrib><creatorcontrib>Zhai, Yuanbo</creatorcontrib><creatorcontrib>Cai, Qiang</creatorcontrib><creatorcontrib>Li, Rujiang</creatorcontrib><creatorcontrib>Li, Pengfei</creatorcontrib><collection>CrossRef</collection><jtitle>Chaos, solitons and fractals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xueqing</au><au>Zhai, Yuanbo</au><au>Cai, Qiang</au><au>Li, Rujiang</au><au>Li, Pengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry breaking and dynamics of solitons in regular and parity-time-symmetric nonlinear coupler supported by fractional dispersion</atitle><jtitle>Chaos, solitons and fractals</jtitle><date>2024-09</date><risdate>2024</risdate><volume>186</volume><spage>115258</spage><pages>115258-</pages><artnum>115258</artnum><issn>0960-0779</issn><eissn>1873-2887</eissn><abstract>The present work investigates symmetry breaking in dual-core couplers with fractional dispersion, cubic self-focusing, gain and loss effects acting in each core, modeled by coupled fractional nonlinear Schrödinger equations with Lévy index. We demonstrate that spontaneous symmetry breaking (SSB) bifurcations of solitons in the regular and parity-time (PT) symmetric fractional coupler with fractional dispersion and cubic nonlinearity. Two types of the asymmetric solutions emerge by way of symmetry breaking bifurcations. By dint of numerical calculations, we identify the symmetry breaking phase transitions of both the first and second kinds (alias sub- and supercritical bifurcations) for symmetric and antisymmetric solitons in the regular fractional couplers. For PT-symmetric fractional nonlinear coupler, the branches of asymmetry solutions are existing with complex conjugate propagation constants (alias ghost states). Moreover, we investigate the dependence of Lévy index on the symmetry breaking of solitons in detail. The stabilities and evolution of the solitons and asymmetric solutions are explored. •Symmetric, antisymmetric and asymmetric solitons are predicted in fractional coupler.•Ghost states are predicted in PT-symmetric fractional coupler.•The subcritical and supercritical bifurcations can exist in fractional coupler.•The stability boundary and dynamic characteristics have been delineated.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.chaos.2024.115258</doi><orcidid>https://orcid.org/0000-0002-5489-0702</orcidid><orcidid>https://orcid.org/0000-0002-0010-4059</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-0779
ispartof Chaos, solitons and fractals, 2024-09, Vol.186, p.115258, Article 115258
issn 0960-0779
1873-2887
language eng
recordid cdi_crossref_primary_10_1016_j_chaos_2024_115258
source ScienceDirect Journals
subjects Fractional dispersion
Ghost state
Soliton dynamics
Subcritical bifurcation
Supercritical bifurcation
title Symmetry breaking and dynamics of solitons in regular and parity-time-symmetric nonlinear coupler supported by fractional dispersion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20breaking%20and%20dynamics%20of%20solitons%20in%20regular%20and%20parity-time-symmetric%20nonlinear%20coupler%20supported%20by%20fractional%20dispersion&rft.jtitle=Chaos,%20solitons%20and%20fractals&rft.au=He,%20Xueqing&rft.date=2024-09&rft.volume=186&rft.spage=115258&rft.pages=115258-&rft.artnum=115258&rft.issn=0960-0779&rft.eissn=1873-2887&rft_id=info:doi/10.1016/j.chaos.2024.115258&rft_dat=%3Celsevier_cross%3ES0960077924008105%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c183t-7b24de59b69d4a6ae29845e414ffbded65a8ef2e88e044991a468bee53b349d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true