Loading…
Supervised classification of monomodal and multimodal hyperspectral data in vibrational microspectroscopy: A comprehensive comparison
The application of Raman and infrared (IR) microspectroscopy is leading to hyperspectral data containing complementary information concerning the molecular composition of a sample. The classification of hyperspectral data from the individual spectroscopic approaches is already state-of-the-art in se...
Saved in:
Published in: | Chemometrics and intelligent laboratory systems 2019-01, Vol.184, p.112-122 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The application of Raman and infrared (IR) microspectroscopy is leading to hyperspectral data containing complementary information concerning the molecular composition of a sample. The classification of hyperspectral data from the individual spectroscopic approaches is already state-of-the-art in several fields of research. However, more complex structured samples and difficult measuring conditions might affect the accuracy of classification results negatively and could make a successful classification of the sample components challenging. This contribution presents a comprehensive comparison in supervised pixel classification of hyperspectral microscopic images, proving that a combined approach of Raman and IR microspectroscopy has a high potential to improve classification rates by a meaningful extension of the feature space. It shows that the complementary information in spatially co-registered hyperspectral images of polymer samples can be accessed using different feature extraction methods and, once fused on the feature-level, is in general more accurately classifiable in a pattern recognition task than the corresponding classification results for data derived from the individual spectroscopic approaches. |
---|---|
ISSN: | 0169-7439 1873-3239 |
DOI: | 10.1016/j.chemolab.2018.11.013 |