Loading…

Supervised classification of monomodal and multimodal hyperspectral data in vibrational microspectroscopy: A comprehensive comparison

The application of Raman and infrared (IR) microspectroscopy is leading to hyperspectral data containing complementary information concerning the molecular composition of a sample. The classification of hyperspectral data from the individual spectroscopic approaches is already state-of-the-art in se...

Full description

Saved in:
Bibliographic Details
Published in:Chemometrics and intelligent laboratory systems 2019-01, Vol.184, p.112-122
Main Authors: Pomrehn, Ch, Klein, D., Kolb, A., Kaul, P., Herpers, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The application of Raman and infrared (IR) microspectroscopy is leading to hyperspectral data containing complementary information concerning the molecular composition of a sample. The classification of hyperspectral data from the individual spectroscopic approaches is already state-of-the-art in several fields of research. However, more complex structured samples and difficult measuring conditions might affect the accuracy of classification results negatively and could make a successful classification of the sample components challenging. This contribution presents a comprehensive comparison in supervised pixel classification of hyperspectral microscopic images, proving that a combined approach of Raman and IR microspectroscopy has a high potential to improve classification rates by a meaningful extension of the feature space. It shows that the complementary information in spatially co-registered hyperspectral images of polymer samples can be accessed using different feature extraction methods and, once fused on the feature-level, is in general more accurately classifiable in a pattern recognition task than the corresponding classification results for data derived from the individual spectroscopic approaches.
ISSN:0169-7439
1873-3239
DOI:10.1016/j.chemolab.2018.11.013