Loading…
Effective electro-Fenton-like process for phenol degradation on cerium oxide hollow spheres encapsulated in porous carbon cathode derived from skimmed cotton
The uniform size cerium dioxide hollow spheres which were prepared by the SiO2 hard template method were loaded on microporous porous carbon obtained by carbonization derived from skimmed cotton (CSC) for electro-Fenton-like degradation of phenol. The microstructures of CSC/CeO2 composite materials...
Saved in:
Published in: | Chemosphere (Oxford) 2021-05, Vol.270, p.128661, Article 128661 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-fe54aaecb7d3189f00bcf67c35142410b23724c43d3ef23dc5b6835c7257c2133 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-fe54aaecb7d3189f00bcf67c35142410b23724c43d3ef23dc5b6835c7257c2133 |
container_end_page | |
container_issue | |
container_start_page | 128661 |
container_title | Chemosphere (Oxford) |
container_volume | 270 |
creator | Chen, Jie Wan, Jiafeng Gong, Yuguo Xu, Ke Zhang, Huidi Chen, Lina Liu, Jinqiao Liu, Chuntao |
description | The uniform size cerium dioxide hollow spheres which were prepared by the SiO2 hard template method were loaded on microporous porous carbon obtained by carbonization derived from skimmed cotton (CSC) for electro-Fenton-like degradation of phenol. The microstructures of CSC/CeO2 composite materials were characterized utilizing XRD, BET, XPS, SEM, and TEM. The electrochemical performance of the CSC/CeO2 cathodes was studied through cyclic voltammetry and electrochemical impedance spectroscopy. The prepared CSC has a hollow tubular structure, and cerium dioxide is evenly loaded on the surface of the CSC in the form of uniform-sized hollow spheres. The CSC/CeO2 materials have a great specific surface area (287.73 m2 g−1) and a uniform poresize. The electrochemical performance analysis demonstrated that the redox ability of the material greatly was improved by loading CeO2 on the porous carbon surface of the skimmed cotton. The load ratio of cerium dioxide hollow spheres affects the structure and properties of CSC/CeO2 materials. Ce3+ and Ce4+ were co-existed in CSC/CeO2, which promoted the generation of H2O2 and .OH, and improved the catalytic activity of composite materials. The degradation efficiency of phenol reached 97.6% in 120 min, and the CSC/CeO2 cathode manifested excellent stability after being experimented 20 times. CSC/CeO2 composite material has great practical value in the treatment of phenolic wastewater and has promise for further application.
•Degradation of phenol by Fenton-like reaction of CSC/CeO2 cathode.•The prepared CSC/CeO2 cathode had excellent electrocatalytic properties.•The valence transition of Ce3+/Ce4+ accelerates the degradation efficiency of phenol.•H2O2 and .OH play a vital role in electrocatalytic degradation. |
doi_str_mv | 10.1016/j.chemosphere.2020.128661 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chemosphere_2020_128661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653520328563</els_id><sourcerecordid>33109361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-fe54aaecb7d3189f00bcf67c35142410b23724c43d3ef23dc5b6835c7257c2133</originalsourceid><addsrcrecordid>eNqNkNuKFDEQhoMo7rj6ChIfoMccOn24lGFXhQVv9DqkKxUns91dTdIz6sP4rmZoFS-FQA7UV_XnY-yNFHspZPP2tIcjTpSXIybcK6HKu-qaRj5hO9m1fSVV3z1lOyFqUzVGmxv2IueTEAU2_XN2o7UUvW7kjv28CwFhjRfkOJZDouoe55XmaoyPyJdEgDnzQImXaTON3OPX5LxbI828LMAUzxOn79EjP9I40je-BcscZ3BLPo9uRc_jzBdKdM4cXBqupFuPVCBfOlxKQUg08fwYp6lcgNYS4iV7FtyY8dXv_ZZ9ub_7fPhQPXx6__Hw7qEC3bZrFdDUziEMrdey64MQA4SmBW1krWopBqVbVUOtvcagtAczNJ020CrTgpJa37J-6wuJck4Y7JLi5NIPK4W9Krcn-49ye1VuN-WFfb2xy3koyf-SfxyXgsNWgOUHl4jJZohFDfqYinHrKf7HmF86CJ0K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effective electro-Fenton-like process for phenol degradation on cerium oxide hollow spheres encapsulated in porous carbon cathode derived from skimmed cotton</title><source>ScienceDirect Freedom Collection</source><creator>Chen, Jie ; Wan, Jiafeng ; Gong, Yuguo ; Xu, Ke ; Zhang, Huidi ; Chen, Lina ; Liu, Jinqiao ; Liu, Chuntao</creator><creatorcontrib>Chen, Jie ; Wan, Jiafeng ; Gong, Yuguo ; Xu, Ke ; Zhang, Huidi ; Chen, Lina ; Liu, Jinqiao ; Liu, Chuntao</creatorcontrib><description>The uniform size cerium dioxide hollow spheres which were prepared by the SiO2 hard template method were loaded on microporous porous carbon obtained by carbonization derived from skimmed cotton (CSC) for electro-Fenton-like degradation of phenol. The microstructures of CSC/CeO2 composite materials were characterized utilizing XRD, BET, XPS, SEM, and TEM. The electrochemical performance of the CSC/CeO2 cathodes was studied through cyclic voltammetry and electrochemical impedance spectroscopy. The prepared CSC has a hollow tubular structure, and cerium dioxide is evenly loaded on the surface of the CSC in the form of uniform-sized hollow spheres. The CSC/CeO2 materials have a great specific surface area (287.73 m2 g−1) and a uniform poresize. The electrochemical performance analysis demonstrated that the redox ability of the material greatly was improved by loading CeO2 on the porous carbon surface of the skimmed cotton. The load ratio of cerium dioxide hollow spheres affects the structure and properties of CSC/CeO2 materials. Ce3+ and Ce4+ were co-existed in CSC/CeO2, which promoted the generation of H2O2 and .OH, and improved the catalytic activity of composite materials. The degradation efficiency of phenol reached 97.6% in 120 min, and the CSC/CeO2 cathode manifested excellent stability after being experimented 20 times. CSC/CeO2 composite material has great practical value in the treatment of phenolic wastewater and has promise for further application.
•Degradation of phenol by Fenton-like reaction of CSC/CeO2 cathode.•The prepared CSC/CeO2 cathode had excellent electrocatalytic properties.•The valence transition of Ce3+/Ce4+ accelerates the degradation efficiency of phenol.•H2O2 and .OH play a vital role in electrocatalytic degradation.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2020.128661</identifier><identifier>PMID: 33109361</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Carbon ; Catalysis ; Cerium ; Electrocatalytic ; Electrodes ; Fenton-like catalyst ; Hydrogen Peroxide ; Hydroxyl radical ; Porosity ; Porous carbon ; Silicon Dioxide</subject><ispartof>Chemosphere (Oxford), 2021-05, Vol.270, p.128661, Article 128661</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-fe54aaecb7d3189f00bcf67c35142410b23724c43d3ef23dc5b6835c7257c2133</citedby><cites>FETCH-LOGICAL-c377t-fe54aaecb7d3189f00bcf67c35142410b23724c43d3ef23dc5b6835c7257c2133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33109361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Wan, Jiafeng</creatorcontrib><creatorcontrib>Gong, Yuguo</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Zhang, Huidi</creatorcontrib><creatorcontrib>Chen, Lina</creatorcontrib><creatorcontrib>Liu, Jinqiao</creatorcontrib><creatorcontrib>Liu, Chuntao</creatorcontrib><title>Effective electro-Fenton-like process for phenol degradation on cerium oxide hollow spheres encapsulated in porous carbon cathode derived from skimmed cotton</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>The uniform size cerium dioxide hollow spheres which were prepared by the SiO2 hard template method were loaded on microporous porous carbon obtained by carbonization derived from skimmed cotton (CSC) for electro-Fenton-like degradation of phenol. The microstructures of CSC/CeO2 composite materials were characterized utilizing XRD, BET, XPS, SEM, and TEM. The electrochemical performance of the CSC/CeO2 cathodes was studied through cyclic voltammetry and electrochemical impedance spectroscopy. The prepared CSC has a hollow tubular structure, and cerium dioxide is evenly loaded on the surface of the CSC in the form of uniform-sized hollow spheres. The CSC/CeO2 materials have a great specific surface area (287.73 m2 g−1) and a uniform poresize. The electrochemical performance analysis demonstrated that the redox ability of the material greatly was improved by loading CeO2 on the porous carbon surface of the skimmed cotton. The load ratio of cerium dioxide hollow spheres affects the structure and properties of CSC/CeO2 materials. Ce3+ and Ce4+ were co-existed in CSC/CeO2, which promoted the generation of H2O2 and .OH, and improved the catalytic activity of composite materials. The degradation efficiency of phenol reached 97.6% in 120 min, and the CSC/CeO2 cathode manifested excellent stability after being experimented 20 times. CSC/CeO2 composite material has great practical value in the treatment of phenolic wastewater and has promise for further application.
•Degradation of phenol by Fenton-like reaction of CSC/CeO2 cathode.•The prepared CSC/CeO2 cathode had excellent electrocatalytic properties.•The valence transition of Ce3+/Ce4+ accelerates the degradation efficiency of phenol.•H2O2 and .OH play a vital role in electrocatalytic degradation.</description><subject>Carbon</subject><subject>Catalysis</subject><subject>Cerium</subject><subject>Electrocatalytic</subject><subject>Electrodes</subject><subject>Fenton-like catalyst</subject><subject>Hydrogen Peroxide</subject><subject>Hydroxyl radical</subject><subject>Porosity</subject><subject>Porous carbon</subject><subject>Silicon Dioxide</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkNuKFDEQhoMo7rj6ChIfoMccOn24lGFXhQVv9DqkKxUns91dTdIz6sP4rmZoFS-FQA7UV_XnY-yNFHspZPP2tIcjTpSXIybcK6HKu-qaRj5hO9m1fSVV3z1lOyFqUzVGmxv2IueTEAU2_XN2o7UUvW7kjv28CwFhjRfkOJZDouoe55XmaoyPyJdEgDnzQImXaTON3OPX5LxbI828LMAUzxOn79EjP9I40je-BcscZ3BLPo9uRc_jzBdKdM4cXBqupFuPVCBfOlxKQUg08fwYp6lcgNYS4iV7FtyY8dXv_ZZ9ub_7fPhQPXx6__Hw7qEC3bZrFdDUziEMrdey64MQA4SmBW1krWopBqVbVUOtvcagtAczNJ020CrTgpJa37J-6wuJck4Y7JLi5NIPK4W9Krcn-49ye1VuN-WFfb2xy3koyf-SfxyXgsNWgOUHl4jJZohFDfqYinHrKf7HmF86CJ0K</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Chen, Jie</creator><creator>Wan, Jiafeng</creator><creator>Gong, Yuguo</creator><creator>Xu, Ke</creator><creator>Zhang, Huidi</creator><creator>Chen, Lina</creator><creator>Liu, Jinqiao</creator><creator>Liu, Chuntao</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202105</creationdate><title>Effective electro-Fenton-like process for phenol degradation on cerium oxide hollow spheres encapsulated in porous carbon cathode derived from skimmed cotton</title><author>Chen, Jie ; Wan, Jiafeng ; Gong, Yuguo ; Xu, Ke ; Zhang, Huidi ; Chen, Lina ; Liu, Jinqiao ; Liu, Chuntao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-fe54aaecb7d3189f00bcf67c35142410b23724c43d3ef23dc5b6835c7257c2133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon</topic><topic>Catalysis</topic><topic>Cerium</topic><topic>Electrocatalytic</topic><topic>Electrodes</topic><topic>Fenton-like catalyst</topic><topic>Hydrogen Peroxide</topic><topic>Hydroxyl radical</topic><topic>Porosity</topic><topic>Porous carbon</topic><topic>Silicon Dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Wan, Jiafeng</creatorcontrib><creatorcontrib>Gong, Yuguo</creatorcontrib><creatorcontrib>Xu, Ke</creatorcontrib><creatorcontrib>Zhang, Huidi</creatorcontrib><creatorcontrib>Chen, Lina</creatorcontrib><creatorcontrib>Liu, Jinqiao</creatorcontrib><creatorcontrib>Liu, Chuntao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jie</au><au>Wan, Jiafeng</au><au>Gong, Yuguo</au><au>Xu, Ke</au><au>Zhang, Huidi</au><au>Chen, Lina</au><au>Liu, Jinqiao</au><au>Liu, Chuntao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective electro-Fenton-like process for phenol degradation on cerium oxide hollow spheres encapsulated in porous carbon cathode derived from skimmed cotton</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2021-05</date><risdate>2021</risdate><volume>270</volume><spage>128661</spage><pages>128661-</pages><artnum>128661</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>The uniform size cerium dioxide hollow spheres which were prepared by the SiO2 hard template method were loaded on microporous porous carbon obtained by carbonization derived from skimmed cotton (CSC) for electro-Fenton-like degradation of phenol. The microstructures of CSC/CeO2 composite materials were characterized utilizing XRD, BET, XPS, SEM, and TEM. The electrochemical performance of the CSC/CeO2 cathodes was studied through cyclic voltammetry and electrochemical impedance spectroscopy. The prepared CSC has a hollow tubular structure, and cerium dioxide is evenly loaded on the surface of the CSC in the form of uniform-sized hollow spheres. The CSC/CeO2 materials have a great specific surface area (287.73 m2 g−1) and a uniform poresize. The electrochemical performance analysis demonstrated that the redox ability of the material greatly was improved by loading CeO2 on the porous carbon surface of the skimmed cotton. The load ratio of cerium dioxide hollow spheres affects the structure and properties of CSC/CeO2 materials. Ce3+ and Ce4+ were co-existed in CSC/CeO2, which promoted the generation of H2O2 and .OH, and improved the catalytic activity of composite materials. The degradation efficiency of phenol reached 97.6% in 120 min, and the CSC/CeO2 cathode manifested excellent stability after being experimented 20 times. CSC/CeO2 composite material has great practical value in the treatment of phenolic wastewater and has promise for further application.
•Degradation of phenol by Fenton-like reaction of CSC/CeO2 cathode.•The prepared CSC/CeO2 cathode had excellent electrocatalytic properties.•The valence transition of Ce3+/Ce4+ accelerates the degradation efficiency of phenol.•H2O2 and .OH play a vital role in electrocatalytic degradation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33109361</pmid><doi>10.1016/j.chemosphere.2020.128661</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-6535 |
ispartof | Chemosphere (Oxford), 2021-05, Vol.270, p.128661, Article 128661 |
issn | 0045-6535 1879-1298 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_chemosphere_2020_128661 |
source | ScienceDirect Freedom Collection |
subjects | Carbon Catalysis Cerium Electrocatalytic Electrodes Fenton-like catalyst Hydrogen Peroxide Hydroxyl radical Porosity Porous carbon Silicon Dioxide |
title | Effective electro-Fenton-like process for phenol degradation on cerium oxide hollow spheres encapsulated in porous carbon cathode derived from skimmed cotton |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T03%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20electro-Fenton-like%20process%20for%20phenol%20degradation%20on%20cerium%20oxide%20hollow%20spheres%20encapsulated%20in%20porous%20carbon%20cathode%20derived%20from%20skimmed%20cotton&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Chen,%20Jie&rft.date=2021-05&rft.volume=270&rft.spage=128661&rft.pages=128661-&rft.artnum=128661&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2020.128661&rft_dat=%3Cpubmed_cross%3E33109361%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-fe54aaecb7d3189f00bcf67c35142410b23724c43d3ef23dc5b6835c7257c2133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/33109361&rfr_iscdi=true |