Loading…
Many-particle tunnelling in a driven Bosonic Josephson junction
We study the quantum many-body dynamics of a Bose–Einstein condensate in a double well potential subjected to a time-periodic modulation. For modulation frequencies moderately higher than the single-particle tunnelling frequency, this system displays an interplay of self-trapping and coherent tunnel...
Saved in:
Published in: | Chemical physics 2006-03, Vol.322 (1), p.118-126 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the quantum many-body dynamics of a Bose–Einstein condensate in a double well potential subjected to a time-periodic modulation. For modulation frequencies moderately higher than the single-particle tunnelling frequency, this system displays an interplay of self-trapping and coherent tunnelling destruction, allowing one to effectively shut off the tunnelling contact in extended parameter regimes. For modulation frequencies roughly equalling the tunnelling frequency, one encounters chaotic dynamics, and finds sudden population jumps in the regime of low-frequency driving. A driven Bosonic Josephson junction thus constitutes a promising tool for the coherent control of mesoscopic matter waves. Our predictions can be verified under presently accessible experimental conditions. |
---|---|
ISSN: | 0301-0104 |
DOI: | 10.1016/j.chemphys.2005.06.025 |