Loading…
Femtosecond laser-induced dissociation (fs-LID) as an activation method in mass spectrometry
We report the photolysis of biomolecules in a Fourier-transform ion cyclotron resonance mass spectrometer by intense near-infrared femtosecond laser pulses. Photo-fragmentation was accompanied by photo-ionization and created a large number and variety of charged fragments, which could be identified...
Saved in:
Published in: | Chemical physics 2018-10, Vol.514, p.106-112 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the photolysis of biomolecules in a Fourier-transform ion cyclotron resonance mass spectrometer by intense near-infrared femtosecond laser pulses. Photo-fragmentation was accompanied by photo-ionization and created a large number and variety of charged fragments, which could be identified with high confidence due to the outstanding resolving power and mass accuracy of the mass spectrometer. Fragmentation patterns were sufficient for peptide sequence analysis. Fragments formed by non-ergodic cleavage retained labile post-translational modifications. |
---|---|
ISSN: | 0301-0104 |
DOI: | 10.1016/j.chemphys.2018.05.008 |