Loading…

Reaction-diffusion of double exothermic couple stress fluid and thermal criticality with Reynold’s viscosity and optical radiation

A theoretical investigation of double exothermic reaction–diffusion of couple stress fluid and thermal ignition branched chain with optical radiation and exponential Reynold’s viscosity is examined in a channel. With isothermal temperature and low ambient heat exchange, the fluid flow is influenced...

Full description

Saved in:
Bibliographic Details
Published in:Chemical physics 2022-09, Vol.561, p.111601, Article 111601
Main Authors: Salawu, S.O., Ogunseye, H.A., Shamshuddin, MD, Disu, A.B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c227t-1e223b6618c2d9f65cb036e6e73e976da91d7b7a43d0c5c54aca5db4dfcd2f9f3
cites cdi_FETCH-LOGICAL-c227t-1e223b6618c2d9f65cb036e6e73e976da91d7b7a43d0c5c54aca5db4dfcd2f9f3
container_end_page
container_issue
container_start_page 111601
container_title Chemical physics
container_volume 561
creator Salawu, S.O.
Ogunseye, H.A.
Shamshuddin, MD
Disu, A.B.
description A theoretical investigation of double exothermic reaction–diffusion of couple stress fluid and thermal ignition branched chain with optical radiation and exponential Reynold’s viscosity is examined in a channel. With isothermal temperature and low ambient heat exchange, the fluid flow is influenced by the upper motion of the wall and the applied pressure. The Arrhenius generalized reaction model is considered for the non-Newtonian species diffusion without material consumption in the presence of pre-exponential factor. The nonlinear dimensionless, viscous exothermic reactive couple stress fluid model is solved by an implicit semi finite difference technique to determine parametric sensitivities. The outcomes of the numerical computation are demonstrated in graphs and tables. It is revealed from the investigation that the thin radiation and couple stress material reduces temperature distribution which resulted into an improved fluid viscosity. Thermal explosion can be avoided by careful monitoring of heat generating terms.
doi_str_mv 10.1016/j.chemphys.2022.111601
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_chemphys_2022_111601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301010422001562</els_id><sourcerecordid>S0301010422001562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-1e223b6618c2d9f65cb036e6e73e976da91d7b7a43d0c5c54aca5db4dfcd2f9f3</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhbMAiVK4AvIFEmwncZodqOJPqoRUwdpyxmPFVRpHdlLIjgWX4HqchKaFNasZzZv3ZvRF0RWjCaNMXG8SqHHb1WNIOOU8YYwJyk6iGU0piymj2Vl0HsKGUpov0nwWfa5RQW9dG2trzBD2HXGGaDdUDRJ8d32NfmuBgBu6_ST0HkMgphmsJqrV5KCrhoC3vQXV2H4kb7avyRrH1jX6--MrkJ0N4MIkTRbXHTaJV9qq6fZFdGpUE_Dyt86j1_u7l-VjvHp-eFrermLgvOhjhpynlRBsAVyXRuRQ0VSgwCLFshBalUwXVaGyVFPIIc8UqFxXmTaguSlNOo_EMRe8C8GjkZ23W-VHyaic-MmN_OMnJ37yyG9vvDkacf_dzqKXASy2gNp6hF5qZ_-L-AEb2oTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reaction-diffusion of double exothermic couple stress fluid and thermal criticality with Reynold’s viscosity and optical radiation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Salawu, S.O. ; Ogunseye, H.A. ; Shamshuddin, MD ; Disu, A.B.</creator><creatorcontrib>Salawu, S.O. ; Ogunseye, H.A. ; Shamshuddin, MD ; Disu, A.B.</creatorcontrib><description>A theoretical investigation of double exothermic reaction–diffusion of couple stress fluid and thermal ignition branched chain with optical radiation and exponential Reynold’s viscosity is examined in a channel. With isothermal temperature and low ambient heat exchange, the fluid flow is influenced by the upper motion of the wall and the applied pressure. The Arrhenius generalized reaction model is considered for the non-Newtonian species diffusion without material consumption in the presence of pre-exponential factor. The nonlinear dimensionless, viscous exothermic reactive couple stress fluid model is solved by an implicit semi finite difference technique to determine parametric sensitivities. The outcomes of the numerical computation are demonstrated in graphs and tables. It is revealed from the investigation that the thin radiation and couple stress material reduces temperature distribution which resulted into an improved fluid viscosity. Thermal explosion can be avoided by careful monitoring of heat generating terms.</description><identifier>ISSN: 0301-0104</identifier><identifier>DOI: 10.1016/j.chemphys.2022.111601</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chemical kinetics ; Exothermic reaction ; Reactive-diffusion ; Reynold’s viscosity ; Thermal runaway</subject><ispartof>Chemical physics, 2022-09, Vol.561, p.111601, Article 111601</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c227t-1e223b6618c2d9f65cb036e6e73e976da91d7b7a43d0c5c54aca5db4dfcd2f9f3</citedby><cites>FETCH-LOGICAL-c227t-1e223b6618c2d9f65cb036e6e73e976da91d7b7a43d0c5c54aca5db4dfcd2f9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Salawu, S.O.</creatorcontrib><creatorcontrib>Ogunseye, H.A.</creatorcontrib><creatorcontrib>Shamshuddin, MD</creatorcontrib><creatorcontrib>Disu, A.B.</creatorcontrib><title>Reaction-diffusion of double exothermic couple stress fluid and thermal criticality with Reynold’s viscosity and optical radiation</title><title>Chemical physics</title><description>A theoretical investigation of double exothermic reaction–diffusion of couple stress fluid and thermal ignition branched chain with optical radiation and exponential Reynold’s viscosity is examined in a channel. With isothermal temperature and low ambient heat exchange, the fluid flow is influenced by the upper motion of the wall and the applied pressure. The Arrhenius generalized reaction model is considered for the non-Newtonian species diffusion without material consumption in the presence of pre-exponential factor. The nonlinear dimensionless, viscous exothermic reactive couple stress fluid model is solved by an implicit semi finite difference technique to determine parametric sensitivities. The outcomes of the numerical computation are demonstrated in graphs and tables. It is revealed from the investigation that the thin radiation and couple stress material reduces temperature distribution which resulted into an improved fluid viscosity. Thermal explosion can be avoided by careful monitoring of heat generating terms.</description><subject>Chemical kinetics</subject><subject>Exothermic reaction</subject><subject>Reactive-diffusion</subject><subject>Reynold’s viscosity</subject><subject>Thermal runaway</subject><issn>0301-0104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhbMAiVK4AvIFEmwncZodqOJPqoRUwdpyxmPFVRpHdlLIjgWX4HqchKaFNasZzZv3ZvRF0RWjCaNMXG8SqHHb1WNIOOU8YYwJyk6iGU0piymj2Vl0HsKGUpov0nwWfa5RQW9dG2trzBD2HXGGaDdUDRJ8d32NfmuBgBu6_ST0HkMgphmsJqrV5KCrhoC3vQXV2H4kb7avyRrH1jX6--MrkJ0N4MIkTRbXHTaJV9qq6fZFdGpUE_Dyt86j1_u7l-VjvHp-eFrermLgvOhjhpynlRBsAVyXRuRQ0VSgwCLFshBalUwXVaGyVFPIIc8UqFxXmTaguSlNOo_EMRe8C8GjkZ23W-VHyaic-MmN_OMnJ37yyG9vvDkacf_dzqKXASy2gNp6hF5qZ_-L-AEb2oTY</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Salawu, S.O.</creator><creator>Ogunseye, H.A.</creator><creator>Shamshuddin, MD</creator><creator>Disu, A.B.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Reaction-diffusion of double exothermic couple stress fluid and thermal criticality with Reynold’s viscosity and optical radiation</title><author>Salawu, S.O. ; Ogunseye, H.A. ; Shamshuddin, MD ; Disu, A.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-1e223b6618c2d9f65cb036e6e73e976da91d7b7a43d0c5c54aca5db4dfcd2f9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical kinetics</topic><topic>Exothermic reaction</topic><topic>Reactive-diffusion</topic><topic>Reynold’s viscosity</topic><topic>Thermal runaway</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salawu, S.O.</creatorcontrib><creatorcontrib>Ogunseye, H.A.</creatorcontrib><creatorcontrib>Shamshuddin, MD</creatorcontrib><creatorcontrib>Disu, A.B.</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salawu, S.O.</au><au>Ogunseye, H.A.</au><au>Shamshuddin, MD</au><au>Disu, A.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction-diffusion of double exothermic couple stress fluid and thermal criticality with Reynold’s viscosity and optical radiation</atitle><jtitle>Chemical physics</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>561</volume><spage>111601</spage><pages>111601-</pages><artnum>111601</artnum><issn>0301-0104</issn><abstract>A theoretical investigation of double exothermic reaction–diffusion of couple stress fluid and thermal ignition branched chain with optical radiation and exponential Reynold’s viscosity is examined in a channel. With isothermal temperature and low ambient heat exchange, the fluid flow is influenced by the upper motion of the wall and the applied pressure. The Arrhenius generalized reaction model is considered for the non-Newtonian species diffusion without material consumption in the presence of pre-exponential factor. The nonlinear dimensionless, viscous exothermic reactive couple stress fluid model is solved by an implicit semi finite difference technique to determine parametric sensitivities. The outcomes of the numerical computation are demonstrated in graphs and tables. It is revealed from the investigation that the thin radiation and couple stress material reduces temperature distribution which resulted into an improved fluid viscosity. Thermal explosion can be avoided by careful monitoring of heat generating terms.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.chemphys.2022.111601</doi></addata></record>
fulltext fulltext
identifier ISSN: 0301-0104
ispartof Chemical physics, 2022-09, Vol.561, p.111601, Article 111601
issn 0301-0104
language eng
recordid cdi_crossref_primary_10_1016_j_chemphys_2022_111601
source ScienceDirect Freedom Collection 2022-2024
subjects Chemical kinetics
Exothermic reaction
Reactive-diffusion
Reynold’s viscosity
Thermal runaway
title Reaction-diffusion of double exothermic couple stress fluid and thermal criticality with Reynold’s viscosity and optical radiation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction-diffusion%20of%20double%20exothermic%20couple%20stress%20fluid%20and%20thermal%20criticality%20with%20Reynold%E2%80%99s%20viscosity%20and%20optical%20radiation&rft.jtitle=Chemical%20physics&rft.au=Salawu,%20S.O.&rft.date=2022-09-01&rft.volume=561&rft.spage=111601&rft.pages=111601-&rft.artnum=111601&rft.issn=0301-0104&rft_id=info:doi/10.1016/j.chemphys.2022.111601&rft_dat=%3Celsevier_cross%3ES0301010422001562%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-1e223b6618c2d9f65cb036e6e73e976da91d7b7a43d0c5c54aca5db4dfcd2f9f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true