Loading…

Six novel silicon carbide with direct bandgaps: A comprehensive study

Six new SiC phases with direct bandgaps were found by replacing carbon atoms with carbon and silicon atoms with a stoichiometric ratio of 1:1 in the SACADA-Samara Carbon Allotrope Database of 522 pure carbon structures via the global search method. The six newly discovered SiC phases are in the spac...

Full description

Saved in:
Bibliographic Details
Published in:Chemical physics 2022-09, Vol.561, p.111603, Article 111603
Main Authors: Qin, Yingshuo, Chai, Changchun, Si, Zejian, Song, Yanxing, Yang, Yintang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Six new SiC phases with direct bandgaps were found by replacing carbon atoms with carbon and silicon atoms with a stoichiometric ratio of 1:1 in the SACADA-Samara Carbon Allotrope Database of 522 pure carbon structures via the global search method. The six newly discovered SiC phases are in the space groups of Pccn, P4/ncc, Pmn21, P63/m, I4¯3m, and Pnma, in which crystal structures, stabilities, elastic anisotropy, electronic and effective mass were investigated in detail based on first-principles calculations. The formation energies of Pmn21-SiC and Pnma-SiC are very close to that of F4¯3m-SiC, revealing their superiority in experimental implementation. Pccn-SiC, P4/ncc-SiC, Pmn21-SiC, and Pnma-SiC have better compression resistance than F4¯3m-SiC. All the proposed structures are direct bandgap semiconductors with a wide bandgap range of 2.86 ∼ 3.72 eV, which have a smaller effective mass than diamond silicon, giving promising applications in high-frequency, high-temperature and high-power electronic devices.
ISSN:0301-0104
DOI:10.1016/j.chemphys.2022.111603