Loading…

The Demarcation Point from E-AGB Stars to TP-AGB Stars in HR Diagram for Medium-mass Stars

Via a study of the evolutionary tracks of 3∼10 M stars on the Hertzsprung-Russell diagram, the variations of the energy, density, temperature at the peak of helium-shell burning, ratio of surface luminosity of helium shell to stellar surface luminosity as well as the stellar radius are analyzed. The...

Full description

Saved in:
Bibliographic Details
Published in:Chinese astronomy and astrophysics 2012-01, Vol.36 (1), p.12-26
Main Authors: Hong, Ya-Fang, Jiang, Su-Yun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Via a study of the evolutionary tracks of 3∼10 M stars on the Hertzsprung-Russell diagram, the variations of the energy, density, temperature at the peak of helium-shell burning, ratio of surface luminosity of helium shell to stellar surface luminosity as well as the stellar radius are analyzed. Then the demarcation point of medium-mass stars in the evolution from early AGB stars to thermally pulsing AGB stars on the HR diagram is determined, and for 119 carbon stars our analysis agrees rather well with observation. At the same time the following is suggested. After arriving at this demarcation point in stellar evolution, in the formula of the loss of stellar wind material it is probably needed to introduce a quantity which is not concerned with the surface luminosity, but it dominates the formation of super stellar wind. On this basis and via the analysis of the structure and evolution of 5 M stars as well as the rate of mass loss of stellar wind, it is found that the effect of turbulent pressure on the mass loss of stellar wind in the stage of thermally pulsing AGB stars is rather great, hence the turbulent pressure of thermally pulsing AGB stars cannot be overlooked. Furthermore, the physical factors which possibly affect the matter loss of the stellar winds of thermally pulsing AGB stars are suggested.
ISSN:0275-1062
1879-128X
DOI:10.1016/j.chinastron.2011.12.005