Loading…

Geostationary Satellite Orbit Determination by LEO Networks with Small Inclination

In view of the limitation of ground-based Tracking Telemetry and Command (TT&C) system in covering the geostationary satellite in space and time, the method of determining the orbit of the geostationary satellite by the LEO (Low Earth Orbit) multi-satellites network with small orbit inclination...

Full description

Saved in:
Bibliographic Details
Published in:Chinese astronomy and astrophysics 2023-01, Vol.47 (1), p.204-220
Main Authors: Rui, Shao, Ye-zhi, Song, Zhao, Ye, Chun-ping, Zeng, Xiao-gong, Hu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In view of the limitation of ground-based Tracking Telemetry and Command (TT&C) system in covering the geostationary satellite in space and time, the method of determining the orbit of the geostationary satellite by the LEO (Low Earth Orbit) multi-satellites network with small orbit inclination was proposed. According to the space environment and optical viewing conditions, the simulation data were screened to simulate the real observation scene. The precise orbit determination (POD) of geostationary satellite was calculated by using the optical angle measurement data and the numerical method. By comparing with the reference orbit, under the condition of platform’s orbit accuracy of 5 m, measurement accuracy of 5-arcsecond, and 12 hours of observation, the POD accuracy of geostationary satellite by two LEO satellites can reach the order of kilometers, while the POD accuracy by four LEO satellites can reach the order of 100 meters. Therefore, the POD accuracy has been greatly improved with the increase of the number of LEO satellites.
ISSN:0275-1062
1879-128X
DOI:10.1016/j.chinastron.2023.03.006