Loading…

Purification of human immunoglobulin G by thermoseparating aqueous two-phase systems

The purification of human immunoglobulin G (IgG) from a Chinese hamster ovary (CHO) cells supernatant was studied using an aqueous two-phase system (ATPS) composed of ethylene oxide/propylene oxide (UCON) and dextran. In UCON/dextran systems IgG partitions preferentially to the less hydrophobic dext...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Chromatography A 2008-06, Vol.1195 (1), p.94-100
Main Authors: Ferreira, I. Filipa, Azevedo, Ana M., Rosa, Paula A.J., Aires-Barros, M. Raquel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purification of human immunoglobulin G (IgG) from a Chinese hamster ovary (CHO) cells supernatant was studied using an aqueous two-phase system (ATPS) composed of ethylene oxide/propylene oxide (UCON) and dextran. In UCON/dextran systems IgG partitions preferentially to the less hydrophobic dextran-rich phase (Kp < 1). The addition of triethylene glycol-diglutaric acid (TEG-COOH) shifted the IgG partition into the upper phase showing significant improvements in both the recovery yields and purity. The purification of IgG from a CHO cell supernatant with UCON 2000/dextran/TEG-COOH system was optimised using a central composite design. Using an ATPS composed of 8% UCON, 6% dextran and 20% TEG-COOH, IgG was purified, in two steps, with a global yield of 85% and 88% purity. Statistical valid models were obtained to predict the effect of the experimental conditions on the IgG yield and purity, for both extraction and back-extraction steps. A system composed of 10% UCON, 5.5% dextran and 20% TEG-COOH was identified as the best compromise between final purity and yield.
ISSN:0021-9673
DOI:10.1016/j.chroma.2008.04.077