Loading…

Retention mechanisms in subcritical water reversed-phase chromatography

Differences in the properties of subcritical water and conventional water/acetonitrile and water/methanol mobile phases for reversed phase separations are explored. Using van’t Hoff plots enthalpies and entropies of transfer are compared among the mobile phases while linear solvation energy relation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Chromatography A 2009-06, Vol.1216 (26), p.5106-5111
Main Authors: Allmon, Steven D., Dorsey, John G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Differences in the properties of subcritical water and conventional water/acetonitrile and water/methanol mobile phases for reversed phase separations are explored. Using van’t Hoff plots enthalpies and entropies of transfer are compared among the mobile phases while linear solvation energy relationships are used to quantify contributions to retention based on a solute's polarizability, dipolarity, hydrogen bond donating ability, hydrogen bond accepting ability, and molecular size. Results suggest the presence of acetonitrile or methanol in the mobile phase may decrease dispersive interactions of the solute with the stationary phase compared to subcritical water, thereby lowering enthalpic contributions to retention. Enthalpic contributions are found to drive the retention of a methylene group in all systems studied.
ISSN:0021-9673
DOI:10.1016/j.chroma.2009.04.068