Loading…
A salting out system for improving the efficiency of the headspace solid-phase microextraction of short and medium chain free fatty acids
•Salting out agents able to improve HS–SPME of the FFAs from C2 to C10 were evaluated.•A combination of (NH4)2SO4 and NaH2PO4 improves HS–SPME of the FFAs from C2 to C10.•The effect of (NH4)2SO4/NaH2PO4 was also assessed on food and biological samples.•Up to 4-fold increases in extraction compared t...
Saved in:
Published in: | Journal of Chromatography A 2015-08, Vol.1409, p.282-287 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •Salting out agents able to improve HS–SPME of the FFAs from C2 to C10 were evaluated.•A combination of (NH4)2SO4 and NaH2PO4 improves HS–SPME of the FFAs from C2 to C10.•The effect of (NH4)2SO4/NaH2PO4 was also assessed on food and biological samples.•Up to 4-fold increases in extraction compared to extraction with NaCl were obtained.
Given the importance of short and medium chain free fatty acids (FFAs) in several fields, this study sought to improve the extraction efficiency of the solid-phase microextraction (SPME) of FFAs by evaluating salting out agents that appear promising for this application. The salts ammonium sulfate ((NH4)2SO4) and sodium dihydrogen phosphate (NaH2PO4) were tried on their own and in combination (3.7/1), in four different total amounts, as salting out agents in the headspace–SPME–gas chromatographic (HS–SPME–GC) analysis of the FFAs from acetic acid (C2) to decanoic acid (C10). Their performance in a model system of an aqueous standard mixture of FFAs at a pH of 3.5 was compared to that of the more commonly used sodium chloride (NaCl) and sodium sulfate (Na2SO4). All of the salts and salt systems evaluated, in proper amount, gave improved results compared to NaCl (saturated), which instead gave interesting results only for the least volatile FFAs C8 and C10. For C2–C6, the salt system that gave the best results compared to NaCl was (NH4)2SO4/NaH2PO4, in the highest of the four amounts evaluated, with factor increases between 1.2 and 4.1-fold, and NaH2PO4, between 1.0 and 4.3-fold. The SPME extraction efficiency given by the mixture (NH4)2SO4/NaH2PO4 was also assessed on biological and food samples, confirming that overall it performed better than NaCl. |
---|---|
ISSN: | 0021-9673 |
DOI: | 10.1016/j.chroma.2015.07.051 |