Loading…
Recursive signal denoising method for predictive maintenance of equipment by using deep learning based temporal masking
•Uncertainty of noise increases the difficulty of equipment signal noise reduction.•Two-dimensional masking technique facilitates the decomposition of signal components.•Recursive strategy realizes source-by-source decomposition of signal components.•Model with adjustable parameters achieves adaptiv...
Saved in:
Published in: | Computers & industrial engineering 2024-02, Vol.188, p.109921, Article 109921 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c249t-1dfdfe57a7bdaa4ffa884a916812913eb4ae684ce4759342cfd8e86f7363e9973 |
container_end_page | |
container_issue | |
container_start_page | 109921 |
container_title | Computers & industrial engineering |
container_volume | 188 |
creator | Ren, Jie Zhang, Jie Wang, Junliang Zhao, Xueyi |
description | •Uncertainty of noise increases the difficulty of equipment signal noise reduction.•Two-dimensional masking technique facilitates the decomposition of signal components.•Recursive strategy realizes source-by-source decomposition of signal components.•Model with adjustable parameters achieves adaptive recognition of signal sources.•Signal denoising is a prerequisite for fault prediction of equipment in enterprise.
In the data driven predictive maintenance, high quality data is the premise of high accuracy diagnosis and prediction. In the industrial practice, reducing the noise is of great significance to ensure data quality. This paper proposes a recursive denoising method for manufacturing equipment signals in the data driven predictive maintenance. First, in signal decomposition method, equipment mixed signal is decomposed by temporal masking with dilated convolution neural network to generate a noise mask, which realizes signal decomposition of using recursive operation of temporal masking model. Second, in signal components recognition method, signal component features similarities are calculated, which act on the parameter regulation of signal recognition meta-learning model. The experimental results demonstrated that the proposed method effectively solves the noise reduction problem of the equipment signal. Further engineering tests of a chemical winding machine vibration signal decomposition and recognition show that the proposed method has strong adaptive performance for noise reduction. |
doi_str_mv | 10.1016/j.cie.2024.109921 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cie_2024_109921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835224000421</els_id><sourcerecordid>S0360835224000421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-1dfdfe57a7bdaa4ffa884a916812913eb4ae684ce4759342cfd8e86f7363e9973</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANz8Ail24iS2OKGKP6kSEoKz5djr4tI4wXaL-vY4lDOn1axmRrsfQteULCihzc1moR0sSlKyrIUo6QmaUd6KgtQ1OUUzUjWk4FVdnqOLGDeEEFYLOkPfr6B3Ibo94OjWXm2xAT-46Pwa95A-BoPtEPAYwDidJluvnE_gldeAB4vha-fGHnzC3QHvfnMGYMRbUMFPqlMRDE7Qj0PI9b2Kn3l9ic6s2ka4-ptz9P5w_7Z8KlYvj8_Lu1WhSyZSQY01FupWtZ1RilmrOGdK0IbTUtAKOqag4UwDa2tRsVJbw4E3tq2aCoRoqzmix14dhhgDWDkG16twkJTIiZzcyExOTuTkkVzO3B4zkA_bOwgyZkv-17gAOkkzuH_SP_hgebU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recursive signal denoising method for predictive maintenance of equipment by using deep learning based temporal masking</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Ren, Jie ; Zhang, Jie ; Wang, Junliang ; Zhao, Xueyi</creator><creatorcontrib>Ren, Jie ; Zhang, Jie ; Wang, Junliang ; Zhao, Xueyi</creatorcontrib><description>•Uncertainty of noise increases the difficulty of equipment signal noise reduction.•Two-dimensional masking technique facilitates the decomposition of signal components.•Recursive strategy realizes source-by-source decomposition of signal components.•Model with adjustable parameters achieves adaptive recognition of signal sources.•Signal denoising is a prerequisite for fault prediction of equipment in enterprise.
In the data driven predictive maintenance, high quality data is the premise of high accuracy diagnosis and prediction. In the industrial practice, reducing the noise is of great significance to ensure data quality. This paper proposes a recursive denoising method for manufacturing equipment signals in the data driven predictive maintenance. First, in signal decomposition method, equipment mixed signal is decomposed by temporal masking with dilated convolution neural network to generate a noise mask, which realizes signal decomposition of using recursive operation of temporal masking model. Second, in signal components recognition method, signal component features similarities are calculated, which act on the parameter regulation of signal recognition meta-learning model. The experimental results demonstrated that the proposed method effectively solves the noise reduction problem of the equipment signal. Further engineering tests of a chemical winding machine vibration signal decomposition and recognition show that the proposed method has strong adaptive performance for noise reduction.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2024.109921</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Denoising ; Manufacturing equipment ; Signal decomposition ; Signal recognition ; Winding machine</subject><ispartof>Computers & industrial engineering, 2024-02, Vol.188, p.109921, Article 109921</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-1dfdfe57a7bdaa4ffa884a916812913eb4ae684ce4759342cfd8e86f7363e9973</cites><orcidid>0000-0002-6215-0237 ; 0000-0003-0558-8598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ren, Jie</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wang, Junliang</creatorcontrib><creatorcontrib>Zhao, Xueyi</creatorcontrib><title>Recursive signal denoising method for predictive maintenance of equipment by using deep learning based temporal masking</title><title>Computers & industrial engineering</title><description>•Uncertainty of noise increases the difficulty of equipment signal noise reduction.•Two-dimensional masking technique facilitates the decomposition of signal components.•Recursive strategy realizes source-by-source decomposition of signal components.•Model with adjustable parameters achieves adaptive recognition of signal sources.•Signal denoising is a prerequisite for fault prediction of equipment in enterprise.
In the data driven predictive maintenance, high quality data is the premise of high accuracy diagnosis and prediction. In the industrial practice, reducing the noise is of great significance to ensure data quality. This paper proposes a recursive denoising method for manufacturing equipment signals in the data driven predictive maintenance. First, in signal decomposition method, equipment mixed signal is decomposed by temporal masking with dilated convolution neural network to generate a noise mask, which realizes signal decomposition of using recursive operation of temporal masking model. Second, in signal components recognition method, signal component features similarities are calculated, which act on the parameter regulation of signal recognition meta-learning model. The experimental results demonstrated that the proposed method effectively solves the noise reduction problem of the equipment signal. Further engineering tests of a chemical winding machine vibration signal decomposition and recognition show that the proposed method has strong adaptive performance for noise reduction.</description><subject>Denoising</subject><subject>Manufacturing equipment</subject><subject>Signal decomposition</subject><subject>Signal recognition</subject><subject>Winding machine</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANz8Ail24iS2OKGKP6kSEoKz5djr4tI4wXaL-vY4lDOn1axmRrsfQteULCihzc1moR0sSlKyrIUo6QmaUd6KgtQ1OUUzUjWk4FVdnqOLGDeEEFYLOkPfr6B3Ibo94OjWXm2xAT-46Pwa95A-BoPtEPAYwDidJluvnE_gldeAB4vha-fGHnzC3QHvfnMGYMRbUMFPqlMRDE7Qj0PI9b2Kn3l9ic6s2ka4-ptz9P5w_7Z8KlYvj8_Lu1WhSyZSQY01FupWtZ1RilmrOGdK0IbTUtAKOqag4UwDa2tRsVJbw4E3tq2aCoRoqzmix14dhhgDWDkG16twkJTIiZzcyExOTuTkkVzO3B4zkA_bOwgyZkv-17gAOkkzuH_SP_hgebU</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Ren, Jie</creator><creator>Zhang, Jie</creator><creator>Wang, Junliang</creator><creator>Zhao, Xueyi</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6215-0237</orcidid><orcidid>https://orcid.org/0000-0003-0558-8598</orcidid></search><sort><creationdate>202402</creationdate><title>Recursive signal denoising method for predictive maintenance of equipment by using deep learning based temporal masking</title><author>Ren, Jie ; Zhang, Jie ; Wang, Junliang ; Zhao, Xueyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-1dfdfe57a7bdaa4ffa884a916812913eb4ae684ce4759342cfd8e86f7363e9973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Denoising</topic><topic>Manufacturing equipment</topic><topic>Signal decomposition</topic><topic>Signal recognition</topic><topic>Winding machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Jie</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wang, Junliang</creatorcontrib><creatorcontrib>Zhao, Xueyi</creatorcontrib><collection>CrossRef</collection><jtitle>Computers & industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Jie</au><au>Zhang, Jie</au><au>Wang, Junliang</au><au>Zhao, Xueyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive signal denoising method for predictive maintenance of equipment by using deep learning based temporal masking</atitle><jtitle>Computers & industrial engineering</jtitle><date>2024-02</date><risdate>2024</risdate><volume>188</volume><spage>109921</spage><pages>109921-</pages><artnum>109921</artnum><issn>0360-8352</issn><eissn>1879-0550</eissn><abstract>•Uncertainty of noise increases the difficulty of equipment signal noise reduction.•Two-dimensional masking technique facilitates the decomposition of signal components.•Recursive strategy realizes source-by-source decomposition of signal components.•Model with adjustable parameters achieves adaptive recognition of signal sources.•Signal denoising is a prerequisite for fault prediction of equipment in enterprise.
In the data driven predictive maintenance, high quality data is the premise of high accuracy diagnosis and prediction. In the industrial practice, reducing the noise is of great significance to ensure data quality. This paper proposes a recursive denoising method for manufacturing equipment signals in the data driven predictive maintenance. First, in signal decomposition method, equipment mixed signal is decomposed by temporal masking with dilated convolution neural network to generate a noise mask, which realizes signal decomposition of using recursive operation of temporal masking model. Second, in signal components recognition method, signal component features similarities are calculated, which act on the parameter regulation of signal recognition meta-learning model. The experimental results demonstrated that the proposed method effectively solves the noise reduction problem of the equipment signal. Further engineering tests of a chemical winding machine vibration signal decomposition and recognition show that the proposed method has strong adaptive performance for noise reduction.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2024.109921</doi><orcidid>https://orcid.org/0000-0002-6215-0237</orcidid><orcidid>https://orcid.org/0000-0003-0558-8598</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-8352 |
ispartof | Computers & industrial engineering, 2024-02, Vol.188, p.109921, Article 109921 |
issn | 0360-8352 1879-0550 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_cie_2024_109921 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Denoising Manufacturing equipment Signal decomposition Signal recognition Winding machine |
title | Recursive signal denoising method for predictive maintenance of equipment by using deep learning based temporal masking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20signal%20denoising%20method%20for%20predictive%20maintenance%20of%20equipment%20by%20using%20deep%20learning%20based%20temporal%20masking&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Ren,%20Jie&rft.date=2024-02&rft.volume=188&rft.spage=109921&rft.pages=109921-&rft.artnum=109921&rft.issn=0360-8352&rft.eissn=1879-0550&rft_id=info:doi/10.1016/j.cie.2024.109921&rft_dat=%3Celsevier_cross%3ES0360835224000421%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-1dfdfe57a7bdaa4ffa884a916812913eb4ae684ce4759342cfd8e86f7363e9973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |