Loading…

Recursive signal denoising method for predictive maintenance of equipment by using deep learning based temporal masking

•Uncertainty of noise increases the difficulty of equipment signal noise reduction.•Two-dimensional masking technique facilitates the decomposition of signal components.•Recursive strategy realizes source-by-source decomposition of signal components.•Model with adjustable parameters achieves adaptiv...

Full description

Saved in:
Bibliographic Details
Published in:Computers & industrial engineering 2024-02, Vol.188, p.109921, Article 109921
Main Authors: Ren, Jie, Zhang, Jie, Wang, Junliang, Zhao, Xueyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c249t-1dfdfe57a7bdaa4ffa884a916812913eb4ae684ce4759342cfd8e86f7363e9973
container_end_page
container_issue
container_start_page 109921
container_title Computers & industrial engineering
container_volume 188
creator Ren, Jie
Zhang, Jie
Wang, Junliang
Zhao, Xueyi
description •Uncertainty of noise increases the difficulty of equipment signal noise reduction.•Two-dimensional masking technique facilitates the decomposition of signal components.•Recursive strategy realizes source-by-source decomposition of signal components.•Model with adjustable parameters achieves adaptive recognition of signal sources.•Signal denoising is a prerequisite for fault prediction of equipment in enterprise. In the data driven predictive maintenance, high quality data is the premise of high accuracy diagnosis and prediction. In the industrial practice, reducing the noise is of great significance to ensure data quality. This paper proposes a recursive denoising method for manufacturing equipment signals in the data driven predictive maintenance. First, in signal decomposition method, equipment mixed signal is decomposed by temporal masking with dilated convolution neural network to generate a noise mask, which realizes signal decomposition of using recursive operation of temporal masking model. Second, in signal components recognition method, signal component features similarities are calculated, which act on the parameter regulation of signal recognition meta-learning model. The experimental results demonstrated that the proposed method effectively solves the noise reduction problem of the equipment signal. Further engineering tests of a chemical winding machine vibration signal decomposition and recognition show that the proposed method has strong adaptive performance for noise reduction.
doi_str_mv 10.1016/j.cie.2024.109921
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cie_2024_109921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835224000421</els_id><sourcerecordid>S0360835224000421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-1dfdfe57a7bdaa4ffa884a916812913eb4ae684ce4759342cfd8e86f7363e9973</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANz8Ail24iS2OKGKP6kSEoKz5djr4tI4wXaL-vY4lDOn1axmRrsfQteULCihzc1moR0sSlKyrIUo6QmaUd6KgtQ1OUUzUjWk4FVdnqOLGDeEEFYLOkPfr6B3Ibo94OjWXm2xAT-46Pwa95A-BoPtEPAYwDidJluvnE_gldeAB4vha-fGHnzC3QHvfnMGYMRbUMFPqlMRDE7Qj0PI9b2Kn3l9ic6s2ka4-ptz9P5w_7Z8KlYvj8_Lu1WhSyZSQY01FupWtZ1RilmrOGdK0IbTUtAKOqag4UwDa2tRsVJbw4E3tq2aCoRoqzmix14dhhgDWDkG16twkJTIiZzcyExOTuTkkVzO3B4zkA_bOwgyZkv-17gAOkkzuH_SP_hgebU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recursive signal denoising method for predictive maintenance of equipment by using deep learning based temporal masking</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Ren, Jie ; Zhang, Jie ; Wang, Junliang ; Zhao, Xueyi</creator><creatorcontrib>Ren, Jie ; Zhang, Jie ; Wang, Junliang ; Zhao, Xueyi</creatorcontrib><description>•Uncertainty of noise increases the difficulty of equipment signal noise reduction.•Two-dimensional masking technique facilitates the decomposition of signal components.•Recursive strategy realizes source-by-source decomposition of signal components.•Model with adjustable parameters achieves adaptive recognition of signal sources.•Signal denoising is a prerequisite for fault prediction of equipment in enterprise. In the data driven predictive maintenance, high quality data is the premise of high accuracy diagnosis and prediction. In the industrial practice, reducing the noise is of great significance to ensure data quality. This paper proposes a recursive denoising method for manufacturing equipment signals in the data driven predictive maintenance. First, in signal decomposition method, equipment mixed signal is decomposed by temporal masking with dilated convolution neural network to generate a noise mask, which realizes signal decomposition of using recursive operation of temporal masking model. Second, in signal components recognition method, signal component features similarities are calculated, which act on the parameter regulation of signal recognition meta-learning model. The experimental results demonstrated that the proposed method effectively solves the noise reduction problem of the equipment signal. Further engineering tests of a chemical winding machine vibration signal decomposition and recognition show that the proposed method has strong adaptive performance for noise reduction.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2024.109921</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Denoising ; Manufacturing equipment ; Signal decomposition ; Signal recognition ; Winding machine</subject><ispartof>Computers &amp; industrial engineering, 2024-02, Vol.188, p.109921, Article 109921</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-1dfdfe57a7bdaa4ffa884a916812913eb4ae684ce4759342cfd8e86f7363e9973</cites><orcidid>0000-0002-6215-0237 ; 0000-0003-0558-8598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ren, Jie</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wang, Junliang</creatorcontrib><creatorcontrib>Zhao, Xueyi</creatorcontrib><title>Recursive signal denoising method for predictive maintenance of equipment by using deep learning based temporal masking</title><title>Computers &amp; industrial engineering</title><description>•Uncertainty of noise increases the difficulty of equipment signal noise reduction.•Two-dimensional masking technique facilitates the decomposition of signal components.•Recursive strategy realizes source-by-source decomposition of signal components.•Model with adjustable parameters achieves adaptive recognition of signal sources.•Signal denoising is a prerequisite for fault prediction of equipment in enterprise. In the data driven predictive maintenance, high quality data is the premise of high accuracy diagnosis and prediction. In the industrial practice, reducing the noise is of great significance to ensure data quality. This paper proposes a recursive denoising method for manufacturing equipment signals in the data driven predictive maintenance. First, in signal decomposition method, equipment mixed signal is decomposed by temporal masking with dilated convolution neural network to generate a noise mask, which realizes signal decomposition of using recursive operation of temporal masking model. Second, in signal components recognition method, signal component features similarities are calculated, which act on the parameter regulation of signal recognition meta-learning model. The experimental results demonstrated that the proposed method effectively solves the noise reduction problem of the equipment signal. Further engineering tests of a chemical winding machine vibration signal decomposition and recognition show that the proposed method has strong adaptive performance for noise reduction.</description><subject>Denoising</subject><subject>Manufacturing equipment</subject><subject>Signal decomposition</subject><subject>Signal recognition</subject><subject>Winding machine</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANz8Ail24iS2OKGKP6kSEoKz5djr4tI4wXaL-vY4lDOn1axmRrsfQteULCihzc1moR0sSlKyrIUo6QmaUd6KgtQ1OUUzUjWk4FVdnqOLGDeEEFYLOkPfr6B3Ibo94OjWXm2xAT-46Pwa95A-BoPtEPAYwDidJluvnE_gldeAB4vha-fGHnzC3QHvfnMGYMRbUMFPqlMRDE7Qj0PI9b2Kn3l9ic6s2ka4-ptz9P5w_7Z8KlYvj8_Lu1WhSyZSQY01FupWtZ1RilmrOGdK0IbTUtAKOqag4UwDa2tRsVJbw4E3tq2aCoRoqzmix14dhhgDWDkG16twkJTIiZzcyExOTuTkkVzO3B4zkA_bOwgyZkv-17gAOkkzuH_SP_hgebU</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Ren, Jie</creator><creator>Zhang, Jie</creator><creator>Wang, Junliang</creator><creator>Zhao, Xueyi</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6215-0237</orcidid><orcidid>https://orcid.org/0000-0003-0558-8598</orcidid></search><sort><creationdate>202402</creationdate><title>Recursive signal denoising method for predictive maintenance of equipment by using deep learning based temporal masking</title><author>Ren, Jie ; Zhang, Jie ; Wang, Junliang ; Zhao, Xueyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-1dfdfe57a7bdaa4ffa884a916812913eb4ae684ce4759342cfd8e86f7363e9973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Denoising</topic><topic>Manufacturing equipment</topic><topic>Signal decomposition</topic><topic>Signal recognition</topic><topic>Winding machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Jie</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wang, Junliang</creatorcontrib><creatorcontrib>Zhao, Xueyi</creatorcontrib><collection>CrossRef</collection><jtitle>Computers &amp; industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Jie</au><au>Zhang, Jie</au><au>Wang, Junliang</au><au>Zhao, Xueyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive signal denoising method for predictive maintenance of equipment by using deep learning based temporal masking</atitle><jtitle>Computers &amp; industrial engineering</jtitle><date>2024-02</date><risdate>2024</risdate><volume>188</volume><spage>109921</spage><pages>109921-</pages><artnum>109921</artnum><issn>0360-8352</issn><eissn>1879-0550</eissn><abstract>•Uncertainty of noise increases the difficulty of equipment signal noise reduction.•Two-dimensional masking technique facilitates the decomposition of signal components.•Recursive strategy realizes source-by-source decomposition of signal components.•Model with adjustable parameters achieves adaptive recognition of signal sources.•Signal denoising is a prerequisite for fault prediction of equipment in enterprise. In the data driven predictive maintenance, high quality data is the premise of high accuracy diagnosis and prediction. In the industrial practice, reducing the noise is of great significance to ensure data quality. This paper proposes a recursive denoising method for manufacturing equipment signals in the data driven predictive maintenance. First, in signal decomposition method, equipment mixed signal is decomposed by temporal masking with dilated convolution neural network to generate a noise mask, which realizes signal decomposition of using recursive operation of temporal masking model. Second, in signal components recognition method, signal component features similarities are calculated, which act on the parameter regulation of signal recognition meta-learning model. The experimental results demonstrated that the proposed method effectively solves the noise reduction problem of the equipment signal. Further engineering tests of a chemical winding machine vibration signal decomposition and recognition show that the proposed method has strong adaptive performance for noise reduction.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2024.109921</doi><orcidid>https://orcid.org/0000-0002-6215-0237</orcidid><orcidid>https://orcid.org/0000-0003-0558-8598</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-8352
ispartof Computers & industrial engineering, 2024-02, Vol.188, p.109921, Article 109921
issn 0360-8352
1879-0550
language eng
recordid cdi_crossref_primary_10_1016_j_cie_2024_109921
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Denoising
Manufacturing equipment
Signal decomposition
Signal recognition
Winding machine
title Recursive signal denoising method for predictive maintenance of equipment by using deep learning based temporal masking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20signal%20denoising%20method%20for%20predictive%20maintenance%20of%20equipment%20by%20using%20deep%20learning%20based%20temporal%20masking&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Ren,%20Jie&rft.date=2024-02&rft.volume=188&rft.spage=109921&rft.pages=109921-&rft.artnum=109921&rft.issn=0360-8352&rft.eissn=1879-0550&rft_id=info:doi/10.1016/j.cie.2024.109921&rft_dat=%3Celsevier_cross%3ES0360835224000421%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-1dfdfe57a7bdaa4ffa884a916812913eb4ae684ce4759342cfd8e86f7363e9973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true