Loading…

Dynamic unbalanced task allocation of warehouse AGVs using integrated adaptive large neighborhood search and Kuhn–Munkres algorithm

Dynamic task allocation poses a complex and challenging decision problem for automated guided vehicles operating within warehouse environments. In this study, we investigate a new method for dynamically allocating unbalanced tasks to a multi-AGV system, with a focus on real-time task arrivals. The r...

Full description

Saved in:
Bibliographic Details
Published in:Computers & industrial engineering 2024-09, Vol.195, p.110410, Article 110410
Main Authors: Xin, Jianbin, Yuan, Quan, D’Ariano, Andrea, Guo, Guanqin, Liu, Yanhong, Zhou, Yanjie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c179t-c9c94f2ffc9c56fafe45eb4e604d944618f6e8315528dc8c3c9a2e747efbc78d3
container_end_page
container_issue
container_start_page 110410
container_title Computers & industrial engineering
container_volume 195
creator Xin, Jianbin
Yuan, Quan
D’Ariano, Andrea
Guo, Guanqin
Liu, Yanhong
Zhou, Yanjie
description Dynamic task allocation poses a complex and challenging decision problem for automated guided vehicles operating within warehouse environments. In this study, we investigate a new method for dynamically allocating unbalanced tasks to a multi-AGV system, with a focus on real-time task arrivals. The research treats this problem as a dynamic vehicle routing problem with pickups and deliveries and proposes the use of a rolling horizon strategy to periodically reallocate tasks by iteratively solving mixed integer programming. To enhance the computational efficiency, a novel metaheuristic is developed, which integrates adaptive large neighborhood search and the Kuhn–Munkres algorithm. Comprehensive numerical experiments are conducted to demonstrate the potential of the proposed approach, in comparison with state-of-the-art heuristics and metaheuristic algorithms, providing insight into the efficiency and effectiveness of the proposed dynamic unbalanced task allocation method for multi-AGV systems in warehouse environments. •A new dynamic unbalanced task allocation of warehouse AGVs is investigated.•A rolling horizon strategy is proposed for solving the VRPPD dynamically.•We develop a new metaheuristic integrating ALNS and KM algorithm.•The integrated metaheuristic simplifies the encoding for task allocation.
doi_str_mv 10.1016/j.cie.2024.110410
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cie_2024_110410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S036083522400531X</els_id><sourcerecordid>S036083522400531X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-c9c94f2ffc9c56fafe45eb4e604d944618f6e8315528dc8c3c9a2e747efbc78d3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRrMAiVI4ADtfIMFOnD-xqgoURBEbYGtNnHHiNrUrOynqjg0n4IachFRlzWpmMW--Ty8IrhiNGGXZ9SqSGqOYxjxijHJGT4IJTTIaFkkanwXn3q8opTwt2ST4ut0b2GhJBlNBB0ZiTXrwawJdZyX02hpiFfkAh60dPJLZ4t2TwWvTEG16bBz0IwI1bHu9Q9KBa5AY1E1bWddaWxOP4GRLwNTkaWjNz-f382DWDv2Y0Vin-3ZzEZwq6Dxe_s1p8HZ_9zp_CJcvi8f5bBlKlpd9KEtZchUrNS5ppkAhT7HimFFel5xnrFAZFglL07ioZSETWUKMOc9RVTIv6mQasONf6az3DpXYOr0BtxeMioM7sRKjO3FwJ47uRubmyOBYbKfRCT-eHERph7IXtdX_0L8kdn3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic unbalanced task allocation of warehouse AGVs using integrated adaptive large neighborhood search and Kuhn–Munkres algorithm</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Xin, Jianbin ; Yuan, Quan ; D’Ariano, Andrea ; Guo, Guanqin ; Liu, Yanhong ; Zhou, Yanjie</creator><creatorcontrib>Xin, Jianbin ; Yuan, Quan ; D’Ariano, Andrea ; Guo, Guanqin ; Liu, Yanhong ; Zhou, Yanjie</creatorcontrib><description>Dynamic task allocation poses a complex and challenging decision problem for automated guided vehicles operating within warehouse environments. In this study, we investigate a new method for dynamically allocating unbalanced tasks to a multi-AGV system, with a focus on real-time task arrivals. The research treats this problem as a dynamic vehicle routing problem with pickups and deliveries and proposes the use of a rolling horizon strategy to periodically reallocate tasks by iteratively solving mixed integer programming. To enhance the computational efficiency, a novel metaheuristic is developed, which integrates adaptive large neighborhood search and the Kuhn–Munkres algorithm. Comprehensive numerical experiments are conducted to demonstrate the potential of the proposed approach, in comparison with state-of-the-art heuristics and metaheuristic algorithms, providing insight into the efficiency and effectiveness of the proposed dynamic unbalanced task allocation method for multi-AGV systems in warehouse environments. •A new dynamic unbalanced task allocation of warehouse AGVs is investigated.•A rolling horizon strategy is proposed for solving the VRPPD dynamically.•We develop a new metaheuristic integrating ALNS and KM algorithm.•The integrated metaheuristic simplifies the encoding for task allocation.</description><identifier>ISSN: 0360-8352</identifier><identifier>DOI: 10.1016/j.cie.2024.110410</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automated guided vehicles ; Integrated metaheuristic ; Rolling horizon strategy ; Unbalanced task allocation</subject><ispartof>Computers &amp; industrial engineering, 2024-09, Vol.195, p.110410, Article 110410</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-c9c94f2ffc9c56fafe45eb4e604d944618f6e8315528dc8c3c9a2e747efbc78d3</cites><orcidid>0000-0002-1024-4135 ; 0000-0003-2222-9140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xin, Jianbin</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><creatorcontrib>D’Ariano, Andrea</creatorcontrib><creatorcontrib>Guo, Guanqin</creatorcontrib><creatorcontrib>Liu, Yanhong</creatorcontrib><creatorcontrib>Zhou, Yanjie</creatorcontrib><title>Dynamic unbalanced task allocation of warehouse AGVs using integrated adaptive large neighborhood search and Kuhn–Munkres algorithm</title><title>Computers &amp; industrial engineering</title><description>Dynamic task allocation poses a complex and challenging decision problem for automated guided vehicles operating within warehouse environments. In this study, we investigate a new method for dynamically allocating unbalanced tasks to a multi-AGV system, with a focus on real-time task arrivals. The research treats this problem as a dynamic vehicle routing problem with pickups and deliveries and proposes the use of a rolling horizon strategy to periodically reallocate tasks by iteratively solving mixed integer programming. To enhance the computational efficiency, a novel metaheuristic is developed, which integrates adaptive large neighborhood search and the Kuhn–Munkres algorithm. Comprehensive numerical experiments are conducted to demonstrate the potential of the proposed approach, in comparison with state-of-the-art heuristics and metaheuristic algorithms, providing insight into the efficiency and effectiveness of the proposed dynamic unbalanced task allocation method for multi-AGV systems in warehouse environments. •A new dynamic unbalanced task allocation of warehouse AGVs is investigated.•A rolling horizon strategy is proposed for solving the VRPPD dynamically.•We develop a new metaheuristic integrating ALNS and KM algorithm.•The integrated metaheuristic simplifies the encoding for task allocation.</description><subject>Automated guided vehicles</subject><subject>Integrated metaheuristic</subject><subject>Rolling horizon strategy</subject><subject>Unbalanced task allocation</subject><issn>0360-8352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRrMAiVI4ADtfIMFOnD-xqgoURBEbYGtNnHHiNrUrOynqjg0n4IachFRlzWpmMW--Ty8IrhiNGGXZ9SqSGqOYxjxijHJGT4IJTTIaFkkanwXn3q8opTwt2ST4ut0b2GhJBlNBB0ZiTXrwawJdZyX02hpiFfkAh60dPJLZ4t2TwWvTEG16bBz0IwI1bHu9Q9KBa5AY1E1bWddaWxOP4GRLwNTkaWjNz-f382DWDv2Y0Vin-3ZzEZwq6Dxe_s1p8HZ_9zp_CJcvi8f5bBlKlpd9KEtZchUrNS5ppkAhT7HimFFel5xnrFAZFglL07ioZSETWUKMOc9RVTIv6mQasONf6az3DpXYOr0BtxeMioM7sRKjO3FwJ47uRubmyOBYbKfRCT-eHERph7IXtdX_0L8kdn3o</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Xin, Jianbin</creator><creator>Yuan, Quan</creator><creator>D’Ariano, Andrea</creator><creator>Guo, Guanqin</creator><creator>Liu, Yanhong</creator><creator>Zhou, Yanjie</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1024-4135</orcidid><orcidid>https://orcid.org/0000-0003-2222-9140</orcidid></search><sort><creationdate>202409</creationdate><title>Dynamic unbalanced task allocation of warehouse AGVs using integrated adaptive large neighborhood search and Kuhn–Munkres algorithm</title><author>Xin, Jianbin ; Yuan, Quan ; D’Ariano, Andrea ; Guo, Guanqin ; Liu, Yanhong ; Zhou, Yanjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-c9c94f2ffc9c56fafe45eb4e604d944618f6e8315528dc8c3c9a2e747efbc78d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automated guided vehicles</topic><topic>Integrated metaheuristic</topic><topic>Rolling horizon strategy</topic><topic>Unbalanced task allocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Jianbin</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><creatorcontrib>D’Ariano, Andrea</creatorcontrib><creatorcontrib>Guo, Guanqin</creatorcontrib><creatorcontrib>Liu, Yanhong</creatorcontrib><creatorcontrib>Zhou, Yanjie</creatorcontrib><collection>CrossRef</collection><jtitle>Computers &amp; industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Jianbin</au><au>Yuan, Quan</au><au>D’Ariano, Andrea</au><au>Guo, Guanqin</au><au>Liu, Yanhong</au><au>Zhou, Yanjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic unbalanced task allocation of warehouse AGVs using integrated adaptive large neighborhood search and Kuhn–Munkres algorithm</atitle><jtitle>Computers &amp; industrial engineering</jtitle><date>2024-09</date><risdate>2024</risdate><volume>195</volume><spage>110410</spage><pages>110410-</pages><artnum>110410</artnum><issn>0360-8352</issn><abstract>Dynamic task allocation poses a complex and challenging decision problem for automated guided vehicles operating within warehouse environments. In this study, we investigate a new method for dynamically allocating unbalanced tasks to a multi-AGV system, with a focus on real-time task arrivals. The research treats this problem as a dynamic vehicle routing problem with pickups and deliveries and proposes the use of a rolling horizon strategy to periodically reallocate tasks by iteratively solving mixed integer programming. To enhance the computational efficiency, a novel metaheuristic is developed, which integrates adaptive large neighborhood search and the Kuhn–Munkres algorithm. Comprehensive numerical experiments are conducted to demonstrate the potential of the proposed approach, in comparison with state-of-the-art heuristics and metaheuristic algorithms, providing insight into the efficiency and effectiveness of the proposed dynamic unbalanced task allocation method for multi-AGV systems in warehouse environments. •A new dynamic unbalanced task allocation of warehouse AGVs is investigated.•A rolling horizon strategy is proposed for solving the VRPPD dynamically.•We develop a new metaheuristic integrating ALNS and KM algorithm.•The integrated metaheuristic simplifies the encoding for task allocation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2024.110410</doi><orcidid>https://orcid.org/0000-0002-1024-4135</orcidid><orcidid>https://orcid.org/0000-0003-2222-9140</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-8352
ispartof Computers & industrial engineering, 2024-09, Vol.195, p.110410, Article 110410
issn 0360-8352
language eng
recordid cdi_crossref_primary_10_1016_j_cie_2024_110410
source ScienceDirect Freedom Collection 2022-2024
subjects Automated guided vehicles
Integrated metaheuristic
Rolling horizon strategy
Unbalanced task allocation
title Dynamic unbalanced task allocation of warehouse AGVs using integrated adaptive large neighborhood search and Kuhn–Munkres algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20unbalanced%20task%20allocation%20of%20warehouse%20AGVs%20using%20integrated%20adaptive%20large%20neighborhood%20search%20and%20Kuhn%E2%80%93Munkres%20algorithm&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Xin,%20Jianbin&rft.date=2024-09&rft.volume=195&rft.spage=110410&rft.pages=110410-&rft.artnum=110410&rft.issn=0360-8352&rft_id=info:doi/10.1016/j.cie.2024.110410&rft_dat=%3Celsevier_cross%3ES036083522400531X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-c9c94f2ffc9c56fafe45eb4e604d944618f6e8315528dc8c3c9a2e747efbc78d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true