Loading…
Dynamic unbalanced task allocation of warehouse AGVs using integrated adaptive large neighborhood search and Kuhn–Munkres algorithm
Dynamic task allocation poses a complex and challenging decision problem for automated guided vehicles operating within warehouse environments. In this study, we investigate a new method for dynamically allocating unbalanced tasks to a multi-AGV system, with a focus on real-time task arrivals. The r...
Saved in:
Published in: | Computers & industrial engineering 2024-09, Vol.195, p.110410, Article 110410 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c179t-c9c94f2ffc9c56fafe45eb4e604d944618f6e8315528dc8c3c9a2e747efbc78d3 |
container_end_page | |
container_issue | |
container_start_page | 110410 |
container_title | Computers & industrial engineering |
container_volume | 195 |
creator | Xin, Jianbin Yuan, Quan D’Ariano, Andrea Guo, Guanqin Liu, Yanhong Zhou, Yanjie |
description | Dynamic task allocation poses a complex and challenging decision problem for automated guided vehicles operating within warehouse environments. In this study, we investigate a new method for dynamically allocating unbalanced tasks to a multi-AGV system, with a focus on real-time task arrivals. The research treats this problem as a dynamic vehicle routing problem with pickups and deliveries and proposes the use of a rolling horizon strategy to periodically reallocate tasks by iteratively solving mixed integer programming. To enhance the computational efficiency, a novel metaheuristic is developed, which integrates adaptive large neighborhood search and the Kuhn–Munkres algorithm. Comprehensive numerical experiments are conducted to demonstrate the potential of the proposed approach, in comparison with state-of-the-art heuristics and metaheuristic algorithms, providing insight into the efficiency and effectiveness of the proposed dynamic unbalanced task allocation method for multi-AGV systems in warehouse environments.
•A new dynamic unbalanced task allocation of warehouse AGVs is investigated.•A rolling horizon strategy is proposed for solving the VRPPD dynamically.•We develop a new metaheuristic integrating ALNS and KM algorithm.•The integrated metaheuristic simplifies the encoding for task allocation. |
doi_str_mv | 10.1016/j.cie.2024.110410 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cie_2024_110410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S036083522400531X</els_id><sourcerecordid>S036083522400531X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c179t-c9c94f2ffc9c56fafe45eb4e604d944618f6e8315528dc8c3c9a2e747efbc78d3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRrMAiVI4ADtfIMFOnD-xqgoURBEbYGtNnHHiNrUrOynqjg0n4IachFRlzWpmMW--Ty8IrhiNGGXZ9SqSGqOYxjxijHJGT4IJTTIaFkkanwXn3q8opTwt2ST4ut0b2GhJBlNBB0ZiTXrwawJdZyX02hpiFfkAh60dPJLZ4t2TwWvTEG16bBz0IwI1bHu9Q9KBa5AY1E1bWddaWxOP4GRLwNTkaWjNz-f382DWDv2Y0Vin-3ZzEZwq6Dxe_s1p8HZ_9zp_CJcvi8f5bBlKlpd9KEtZchUrNS5ppkAhT7HimFFel5xnrFAZFglL07ioZSETWUKMOc9RVTIv6mQasONf6az3DpXYOr0BtxeMioM7sRKjO3FwJ47uRubmyOBYbKfRCT-eHERph7IXtdX_0L8kdn3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dynamic unbalanced task allocation of warehouse AGVs using integrated adaptive large neighborhood search and Kuhn–Munkres algorithm</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Xin, Jianbin ; Yuan, Quan ; D’Ariano, Andrea ; Guo, Guanqin ; Liu, Yanhong ; Zhou, Yanjie</creator><creatorcontrib>Xin, Jianbin ; Yuan, Quan ; D’Ariano, Andrea ; Guo, Guanqin ; Liu, Yanhong ; Zhou, Yanjie</creatorcontrib><description>Dynamic task allocation poses a complex and challenging decision problem for automated guided vehicles operating within warehouse environments. In this study, we investigate a new method for dynamically allocating unbalanced tasks to a multi-AGV system, with a focus on real-time task arrivals. The research treats this problem as a dynamic vehicle routing problem with pickups and deliveries and proposes the use of a rolling horizon strategy to periodically reallocate tasks by iteratively solving mixed integer programming. To enhance the computational efficiency, a novel metaheuristic is developed, which integrates adaptive large neighborhood search and the Kuhn–Munkres algorithm. Comprehensive numerical experiments are conducted to demonstrate the potential of the proposed approach, in comparison with state-of-the-art heuristics and metaheuristic algorithms, providing insight into the efficiency and effectiveness of the proposed dynamic unbalanced task allocation method for multi-AGV systems in warehouse environments.
•A new dynamic unbalanced task allocation of warehouse AGVs is investigated.•A rolling horizon strategy is proposed for solving the VRPPD dynamically.•We develop a new metaheuristic integrating ALNS and KM algorithm.•The integrated metaheuristic simplifies the encoding for task allocation.</description><identifier>ISSN: 0360-8352</identifier><identifier>DOI: 10.1016/j.cie.2024.110410</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automated guided vehicles ; Integrated metaheuristic ; Rolling horizon strategy ; Unbalanced task allocation</subject><ispartof>Computers & industrial engineering, 2024-09, Vol.195, p.110410, Article 110410</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c179t-c9c94f2ffc9c56fafe45eb4e604d944618f6e8315528dc8c3c9a2e747efbc78d3</cites><orcidid>0000-0002-1024-4135 ; 0000-0003-2222-9140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xin, Jianbin</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><creatorcontrib>D’Ariano, Andrea</creatorcontrib><creatorcontrib>Guo, Guanqin</creatorcontrib><creatorcontrib>Liu, Yanhong</creatorcontrib><creatorcontrib>Zhou, Yanjie</creatorcontrib><title>Dynamic unbalanced task allocation of warehouse AGVs using integrated adaptive large neighborhood search and Kuhn–Munkres algorithm</title><title>Computers & industrial engineering</title><description>Dynamic task allocation poses a complex and challenging decision problem for automated guided vehicles operating within warehouse environments. In this study, we investigate a new method for dynamically allocating unbalanced tasks to a multi-AGV system, with a focus on real-time task arrivals. The research treats this problem as a dynamic vehicle routing problem with pickups and deliveries and proposes the use of a rolling horizon strategy to periodically reallocate tasks by iteratively solving mixed integer programming. To enhance the computational efficiency, a novel metaheuristic is developed, which integrates adaptive large neighborhood search and the Kuhn–Munkres algorithm. Comprehensive numerical experiments are conducted to demonstrate the potential of the proposed approach, in comparison with state-of-the-art heuristics and metaheuristic algorithms, providing insight into the efficiency and effectiveness of the proposed dynamic unbalanced task allocation method for multi-AGV systems in warehouse environments.
•A new dynamic unbalanced task allocation of warehouse AGVs is investigated.•A rolling horizon strategy is proposed for solving the VRPPD dynamically.•We develop a new metaheuristic integrating ALNS and KM algorithm.•The integrated metaheuristic simplifies the encoding for task allocation.</description><subject>Automated guided vehicles</subject><subject>Integrated metaheuristic</subject><subject>Rolling horizon strategy</subject><subject>Unbalanced task allocation</subject><issn>0360-8352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRrMAiVI4ADtfIMFOnD-xqgoURBEbYGtNnHHiNrUrOynqjg0n4IachFRlzWpmMW--Ty8IrhiNGGXZ9SqSGqOYxjxijHJGT4IJTTIaFkkanwXn3q8opTwt2ST4ut0b2GhJBlNBB0ZiTXrwawJdZyX02hpiFfkAh60dPJLZ4t2TwWvTEG16bBz0IwI1bHu9Q9KBa5AY1E1bWddaWxOP4GRLwNTkaWjNz-f382DWDv2Y0Vin-3ZzEZwq6Dxe_s1p8HZ_9zp_CJcvi8f5bBlKlpd9KEtZchUrNS5ppkAhT7HimFFel5xnrFAZFglL07ioZSETWUKMOc9RVTIv6mQasONf6az3DpXYOr0BtxeMioM7sRKjO3FwJ47uRubmyOBYbKfRCT-eHERph7IXtdX_0L8kdn3o</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Xin, Jianbin</creator><creator>Yuan, Quan</creator><creator>D’Ariano, Andrea</creator><creator>Guo, Guanqin</creator><creator>Liu, Yanhong</creator><creator>Zhou, Yanjie</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1024-4135</orcidid><orcidid>https://orcid.org/0000-0003-2222-9140</orcidid></search><sort><creationdate>202409</creationdate><title>Dynamic unbalanced task allocation of warehouse AGVs using integrated adaptive large neighborhood search and Kuhn–Munkres algorithm</title><author>Xin, Jianbin ; Yuan, Quan ; D’Ariano, Andrea ; Guo, Guanqin ; Liu, Yanhong ; Zhou, Yanjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c179t-c9c94f2ffc9c56fafe45eb4e604d944618f6e8315528dc8c3c9a2e747efbc78d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automated guided vehicles</topic><topic>Integrated metaheuristic</topic><topic>Rolling horizon strategy</topic><topic>Unbalanced task allocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Jianbin</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><creatorcontrib>D’Ariano, Andrea</creatorcontrib><creatorcontrib>Guo, Guanqin</creatorcontrib><creatorcontrib>Liu, Yanhong</creatorcontrib><creatorcontrib>Zhou, Yanjie</creatorcontrib><collection>CrossRef</collection><jtitle>Computers & industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Jianbin</au><au>Yuan, Quan</au><au>D’Ariano, Andrea</au><au>Guo, Guanqin</au><au>Liu, Yanhong</au><au>Zhou, Yanjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic unbalanced task allocation of warehouse AGVs using integrated adaptive large neighborhood search and Kuhn–Munkres algorithm</atitle><jtitle>Computers & industrial engineering</jtitle><date>2024-09</date><risdate>2024</risdate><volume>195</volume><spage>110410</spage><pages>110410-</pages><artnum>110410</artnum><issn>0360-8352</issn><abstract>Dynamic task allocation poses a complex and challenging decision problem for automated guided vehicles operating within warehouse environments. In this study, we investigate a new method for dynamically allocating unbalanced tasks to a multi-AGV system, with a focus on real-time task arrivals. The research treats this problem as a dynamic vehicle routing problem with pickups and deliveries and proposes the use of a rolling horizon strategy to periodically reallocate tasks by iteratively solving mixed integer programming. To enhance the computational efficiency, a novel metaheuristic is developed, which integrates adaptive large neighborhood search and the Kuhn–Munkres algorithm. Comprehensive numerical experiments are conducted to demonstrate the potential of the proposed approach, in comparison with state-of-the-art heuristics and metaheuristic algorithms, providing insight into the efficiency and effectiveness of the proposed dynamic unbalanced task allocation method for multi-AGV systems in warehouse environments.
•A new dynamic unbalanced task allocation of warehouse AGVs is investigated.•A rolling horizon strategy is proposed for solving the VRPPD dynamically.•We develop a new metaheuristic integrating ALNS and KM algorithm.•The integrated metaheuristic simplifies the encoding for task allocation.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2024.110410</doi><orcidid>https://orcid.org/0000-0002-1024-4135</orcidid><orcidid>https://orcid.org/0000-0003-2222-9140</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-8352 |
ispartof | Computers & industrial engineering, 2024-09, Vol.195, p.110410, Article 110410 |
issn | 0360-8352 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_cie_2024_110410 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Automated guided vehicles Integrated metaheuristic Rolling horizon strategy Unbalanced task allocation |
title | Dynamic unbalanced task allocation of warehouse AGVs using integrated adaptive large neighborhood search and Kuhn–Munkres algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20unbalanced%20task%20allocation%20of%20warehouse%20AGVs%20using%20integrated%20adaptive%20large%20neighborhood%20search%20and%20Kuhn%E2%80%93Munkres%20algorithm&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Xin,%20Jianbin&rft.date=2024-09&rft.volume=195&rft.spage=110410&rft.pages=110410-&rft.artnum=110410&rft.issn=0360-8352&rft_id=info:doi/10.1016/j.cie.2024.110410&rft_dat=%3Celsevier_cross%3ES036083522400531X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c179t-c9c94f2ffc9c56fafe45eb4e604d944618f6e8315528dc8c3c9a2e747efbc78d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |