Loading…
Biocompatible Magnesium Alloys as Absorbable Implant Materials – Adjusted Surface and Subsurface Properties by Machining Processes
Biocompatible magnesium alloys offer great potential as absorbable implant materials. They degrade within a certain time span after surgery and are therefore suitable to temporarily accomplish medical functions, for instance as bone screws or plates. These implants support fractured bones until heal...
Saved in:
Published in: | CIRP annals 2007, Vol.56 (1), p.113-116 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Biocompatible magnesium alloys offer great potential as absorbable implant materials. They degrade within a certain time span after surgery and are therefore suitable to temporarily accomplish medical functions, for instance as bone screws or plates. These implants support fractured bones until healing. This paper describes approaches to control the corrosion of the magnesium and hereby the degradation kinetics of the implant in the organism. The degradation kinetics is adjusted via surface (e.g. topography) and subsurface properties (e.g. residual stresses) of the implant determined by the manufacturing process. Consequently, a specific degradation profile adapted to the individual medical application is achievable. |
---|---|
ISSN: | 0007-8506 |
DOI: | 10.1016/j.cirp.2007.05.029 |