Loading…
Development of a thermomechanical cutting process model for machining process simulations
A thermomechanical model for cutting processes is presented. The deformation in the shear zone is represented using Johnson-Cook material model. The rake contact is modeled using sticking and sliding zones, and their lengths are also predicted. The parameters of the material model and the friction c...
Saved in:
Published in: | CIRP annals 2008, Vol.57 (1), p.97-100 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A thermomechanical model for cutting processes is presented. The deformation in the shear zone is represented using Johnson-Cook material model. The rake contact is modeled using sticking and sliding zones, and their lengths are also predicted. The parameters of the material model and the friction coefficient on the rake are directly identified from a few number of orthogonal cutting tests. The model can predict cutting forces, shear angle and stress, pressure distribution and contact lengths on the rake face and temperature distribution. The application of the model to common operations such as turning and multi-axis milling is also presented with experimental verification, and satisfactory results are obtained. |
---|---|
ISSN: | 0007-8506 |
DOI: | 10.1016/j.cirp.2008.03.008 |