Loading…
An adaptive neuro-fuzzy sliding mode controller for MIMO systems with disturbance
This paper introduces the mathematical model of ammonia and urea reactors and suggested three methods for designing a special purpose controller. The first proposed method is Adaptive model predictive controller, the second is Adaptive Neural Network Model Predictive Control, and the third is Adapti...
Saved in:
Published in: | Chinese journal of chemical engineering 2017-04, Vol.25 (4), p.463-476 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper introduces the mathematical model of ammonia and urea reactors and suggested three methods for designing a special purpose controller. The first proposed method is Adaptive model predictive controller, the second is Adaptive Neural Network Model Predictive Control, and the third is Adaptive neuro-fuzzy sliding mode controller. These methods are applied to a multivariable nonlinear system as an ammonia–urea reactor system. The main target of these controllers is to achieve stabilization of the outlet concentration of ammonia and urea, a stable reaction rate, an increase in the conversion of carbon monoxide(CO) into carbon dioxide(CO2) to reduce the pollution effect, and an increase in the ammonia and urea productions, keeping the NH3/CO2 ratio equal to 3 to reduce the unreacted CO2 and NH3, and the two reactors' temperature in the suitable operating ranges due to the change in reactor parameters or external disturbance. Simulation results of the three controllers are compared. Comparative analysis proves the effectiveness of the suggested Adaptive neurofuzzy sliding mode controller than the two other controllers according to external disturbance and the change of parameters. Moreover, the suggested methods when compared with other controllers in the literature show great success in overcoming the external disturbance and the change of parameters. |
---|---|
ISSN: | 1004-9541 2210-321X |
DOI: | 10.1016/j.cjche.2016.07.021 |