Loading…

Spatiotemporal chaos in spatially extended fractional dynamical systems

This study focuses on the study of spatiotemporal and chaotic behavior in an extended non-integer order dynamical systems which describe the spatial interaction between two biological or chemical species popularly referred to as prey and predator model. Such systems are somewhat sensitive to initial...

Full description

Saved in:
Bibliographic Details
Published in:Communications in nonlinear science & numerical simulation 2023-05, Vol.119, p.107118, Article 107118
Main Authors: Alqhtani, Manal, Owolabi, Kolade M., Saad, Khaled M., Pindza, Edson
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-af9f713cc1c1bb056668e9bbc910fed717dbe6e9a626ee73aebc1f36cc42b0663
cites cdi_FETCH-LOGICAL-c303t-af9f713cc1c1bb056668e9bbc910fed717dbe6e9a626ee73aebc1f36cc42b0663
container_end_page
container_issue
container_start_page 107118
container_title Communications in nonlinear science & numerical simulation
container_volume 119
creator Alqhtani, Manal
Owolabi, Kolade M.
Saad, Khaled M.
Pindza, Edson
description This study focuses on the study of spatiotemporal and chaotic behavior in an extended non-integer order dynamical systems which describe the spatial interaction between two biological or chemical species popularly referred to as prey and predator model. Such systems are somewhat sensitive to initial-value condition, and also exhibit irregular temporal behavior which often leads to the formation of irregular spatial patterns in high dimensions. Over the years, spatiotemporal dynamics of interacting biological/chemical species has been an active subject of discussion. To study the systems for Turing instability, we require to analyze the stability criteria of non-diffusive models at nontrivial state which is most relevant and feasible to our study. We compute the Lyapunov exponents and establish that the Kaplan Yorke dimension exists in the models. Two models of recurring interests are considered for spatiotemporal/complex pattern formations. •Formulation of viable numerical approximation techniques.•Numerical simulations in one and two dimensions.•Spatiotemporal and chaotic patterns formation.•Linear stability analysis of non-diffusive system.
doi_str_mv 10.1016/j.cnsns.2023.107118
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cnsns_2023_107118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570423000369</els_id><sourcerecordid>S1007570423000369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-af9f713cc1c1bb056668e9bbc910fed717dbe6e9a626ee73aebc1f36cc42b0663</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK4-gZe-QGvStEl78CCLrsKCB_UckskEU7rpkhSxb2_W9expfob_G4aPkFtGK0aZuBsqCCmkqqY1zxvJWHdGVqyTXSlr2ZznTKksW0mbS3KV0kAz1bfNimzfDnr204z7wxT1WMCnnlLhQ5GOez2OS4HfMwaLtnBRQ-6GXLNL0HsPOaUlZThdkwunx4Q3f3NNPp4e3zfP5e51-7J52JXAKZ9L7XonGQdgwIyhrRCiw94Y6Bl1aCWT1qDAXotaIEqu0QBzXAA0taFC8DXhp7sQp5QiOnWIfq_johhVRxdqUL8u1NGFOrnI1P2Jwvzal8eoEngMgNZHhFnZyf_L_wAEy2tf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatiotemporal chaos in spatially extended fractional dynamical systems</title><source>ScienceDirect Journals</source><creator>Alqhtani, Manal ; Owolabi, Kolade M. ; Saad, Khaled M. ; Pindza, Edson</creator><creatorcontrib>Alqhtani, Manal ; Owolabi, Kolade M. ; Saad, Khaled M. ; Pindza, Edson</creatorcontrib><description>This study focuses on the study of spatiotemporal and chaotic behavior in an extended non-integer order dynamical systems which describe the spatial interaction between two biological or chemical species popularly referred to as prey and predator model. Such systems are somewhat sensitive to initial-value condition, and also exhibit irregular temporal behavior which often leads to the formation of irregular spatial patterns in high dimensions. Over the years, spatiotemporal dynamics of interacting biological/chemical species has been an active subject of discussion. To study the systems for Turing instability, we require to analyze the stability criteria of non-diffusive models at nontrivial state which is most relevant and feasible to our study. We compute the Lyapunov exponents and establish that the Kaplan Yorke dimension exists in the models. Two models of recurring interests are considered for spatiotemporal/complex pattern formations. •Formulation of viable numerical approximation techniques.•Numerical simulations in one and two dimensions.•Spatiotemporal and chaotic patterns formation.•Linear stability analysis of non-diffusive system.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2023.107118</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Fractional reaction–diffusion equations ; Numerical experiments ; Oscillatory patterns ; Stability analysis</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2023-05, Vol.119, p.107118, Article 107118</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-af9f713cc1c1bb056668e9bbc910fed717dbe6e9a626ee73aebc1f36cc42b0663</citedby><cites>FETCH-LOGICAL-c303t-af9f713cc1c1bb056668e9bbc910fed717dbe6e9a626ee73aebc1f36cc42b0663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Alqhtani, Manal</creatorcontrib><creatorcontrib>Owolabi, Kolade M.</creatorcontrib><creatorcontrib>Saad, Khaled M.</creatorcontrib><creatorcontrib>Pindza, Edson</creatorcontrib><title>Spatiotemporal chaos in spatially extended fractional dynamical systems</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>This study focuses on the study of spatiotemporal and chaotic behavior in an extended non-integer order dynamical systems which describe the spatial interaction between two biological or chemical species popularly referred to as prey and predator model. Such systems are somewhat sensitive to initial-value condition, and also exhibit irregular temporal behavior which often leads to the formation of irregular spatial patterns in high dimensions. Over the years, spatiotemporal dynamics of interacting biological/chemical species has been an active subject of discussion. To study the systems for Turing instability, we require to analyze the stability criteria of non-diffusive models at nontrivial state which is most relevant and feasible to our study. We compute the Lyapunov exponents and establish that the Kaplan Yorke dimension exists in the models. Two models of recurring interests are considered for spatiotemporal/complex pattern formations. •Formulation of viable numerical approximation techniques.•Numerical simulations in one and two dimensions.•Spatiotemporal and chaotic patterns formation.•Linear stability analysis of non-diffusive system.</description><subject>Fractional reaction–diffusion equations</subject><subject>Numerical experiments</subject><subject>Oscillatory patterns</subject><subject>Stability analysis</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK4-gZe-QGvStEl78CCLrsKCB_UckskEU7rpkhSxb2_W9expfob_G4aPkFtGK0aZuBsqCCmkqqY1zxvJWHdGVqyTXSlr2ZznTKksW0mbS3KV0kAz1bfNimzfDnr204z7wxT1WMCnnlLhQ5GOez2OS4HfMwaLtnBRQ-6GXLNL0HsPOaUlZThdkwunx4Q3f3NNPp4e3zfP5e51-7J52JXAKZ9L7XonGQdgwIyhrRCiw94Y6Bl1aCWT1qDAXotaIEqu0QBzXAA0taFC8DXhp7sQp5QiOnWIfq_johhVRxdqUL8u1NGFOrnI1P2Jwvzal8eoEngMgNZHhFnZyf_L_wAEy2tf</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Alqhtani, Manal</creator><creator>Owolabi, Kolade M.</creator><creator>Saad, Khaled M.</creator><creator>Pindza, Edson</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202305</creationdate><title>Spatiotemporal chaos in spatially extended fractional dynamical systems</title><author>Alqhtani, Manal ; Owolabi, Kolade M. ; Saad, Khaled M. ; Pindza, Edson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-af9f713cc1c1bb056668e9bbc910fed717dbe6e9a626ee73aebc1f36cc42b0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Fractional reaction–diffusion equations</topic><topic>Numerical experiments</topic><topic>Oscillatory patterns</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alqhtani, Manal</creatorcontrib><creatorcontrib>Owolabi, Kolade M.</creatorcontrib><creatorcontrib>Saad, Khaled M.</creatorcontrib><creatorcontrib>Pindza, Edson</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alqhtani, Manal</au><au>Owolabi, Kolade M.</au><au>Saad, Khaled M.</au><au>Pindza, Edson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal chaos in spatially extended fractional dynamical systems</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2023-05</date><risdate>2023</risdate><volume>119</volume><spage>107118</spage><pages>107118-</pages><artnum>107118</artnum><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>This study focuses on the study of spatiotemporal and chaotic behavior in an extended non-integer order dynamical systems which describe the spatial interaction between two biological or chemical species popularly referred to as prey and predator model. Such systems are somewhat sensitive to initial-value condition, and also exhibit irregular temporal behavior which often leads to the formation of irregular spatial patterns in high dimensions. Over the years, spatiotemporal dynamics of interacting biological/chemical species has been an active subject of discussion. To study the systems for Turing instability, we require to analyze the stability criteria of non-diffusive models at nontrivial state which is most relevant and feasible to our study. We compute the Lyapunov exponents and establish that the Kaplan Yorke dimension exists in the models. Two models of recurring interests are considered for spatiotemporal/complex pattern formations. •Formulation of viable numerical approximation techniques.•Numerical simulations in one and two dimensions.•Spatiotemporal and chaotic patterns formation.•Linear stability analysis of non-diffusive system.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2023.107118</doi></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2023-05, Vol.119, p.107118, Article 107118
issn 1007-5704
1878-7274
language eng
recordid cdi_crossref_primary_10_1016_j_cnsns_2023_107118
source ScienceDirect Journals
subjects Fractional reaction–diffusion equations
Numerical experiments
Oscillatory patterns
Stability analysis
title Spatiotemporal chaos in spatially extended fractional dynamical systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20chaos%20in%20spatially%20extended%20fractional%20dynamical%20systems&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Alqhtani,%20Manal&rft.date=2023-05&rft.volume=119&rft.spage=107118&rft.pages=107118-&rft.artnum=107118&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2023.107118&rft_dat=%3Celsevier_cross%3ES1007570423000369%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-af9f713cc1c1bb056668e9bbc910fed717dbe6e9a626ee73aebc1f36cc42b0663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true