Loading…
Light-weight, high-gain antenna with broad temperature adaptability based on multifunctional 3D woven spacer Kevlar/polyimide composites
Multifunctional composites endowed with signal transmission and excellent mechanical properties show promising applications in aviation and aerospace. In this study, in combination with copper yarn, Kevlar yarn and polyimide resin, a light-weight 3D woven spacer composite antenna (3DWSCA) was develo...
Saved in:
Published in: | Composites communications 2022-02, Vol.30, p.101061, Article 101061 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multifunctional composites endowed with signal transmission and excellent mechanical properties show promising applications in aviation and aerospace. In this study, in combination with copper yarn, Kevlar yarn and polyimide resin, a light-weight 3D woven spacer composite antenna (3DWSCA) was developed for effective wireless signal transmitting. Based on the advanced 3D structural design, the Kevlar/Polyimide composite substrate with high specific strength (11.2 MPa/g·cm−3), ultra-low density (0.34 g/cm3), superb dielectric properties and small temperature coefficient of resonant frequency (TCF: -12.6 ppm/°C) was constructed. Accordingly, the 3DWSCA realized a gain value of 4.95 dB near designed frequency (2.34 GHz) with a good impedance matching (S11 value |
---|---|
ISSN: | 2452-2139 2452-2139 |
DOI: | 10.1016/j.coco.2022.101061 |