Loading…

Anisotropic elastic properties of triclinic 2D materials using density functional theory with application to rhenium disulfide

In this paper, we present a rigorous and systematic approach for evaluating the linearized elastic stiffnesses of triclinic 2D materials. Unlike orthorhombic and hexagonal materials, triclinic 2D materials exhibit in-plane extension-shear coupling effects wherein axial stresses can cause a shear str...

Full description

Saved in:
Bibliographic Details
Published in:Computational Condensed Matter 2023-03, Vol.34, p.e00790, Article e00790
Main Authors: Maalouf, Serge R., Vel, Senthil S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c278t-9f45a894a3034b3ef589885a426bdab0965535cb73fe05b8173785b7ab7152023
cites cdi_FETCH-LOGICAL-c278t-9f45a894a3034b3ef589885a426bdab0965535cb73fe05b8173785b7ab7152023
container_end_page
container_issue
container_start_page e00790
container_title Computational Condensed Matter
container_volume 34
creator Maalouf, Serge R.
Vel, Senthil S.
description In this paper, we present a rigorous and systematic approach for evaluating the linearized elastic stiffnesses of triclinic 2D materials. Unlike orthorhombic and hexagonal materials, triclinic 2D materials exhibit in-plane extension-shear coupling effects wherein axial stresses can cause a shear strain and a shear stress can induce axial strains. In the presented approach, the elastic stiffnesses of a 2D material are evaluated by curve fitting a constitutive model to either the strain energy densities or the stresses obtained for different strain states in strain space. The approach can be used to determine all the mechanical properties of a triclinic 2D material, including the coefficients of mutual influence that characterize the extension-shear coupling. The proposed approach is illustrated by evaluating the stiffness tensor of triclinic 2D rhenium disulfide using first principles calculations. The Young’s and shear moduli, the Poisson’s ratios and the coefficients of mutual influence of rhenium disulfide are presented along with the directional dependence of its mechanical properties. In addition, the degree of anisotropy of rhenium disulfide is discussed. •Anisotropic linear elastic response of triclinic 2D materials.•Coefficients of mutual influence of triclinic 2D materials.•Plane stress stiffness tensor of rhenium disulfide.•Linearized mechanical properties of rhenium disulfide.•Directional mechanical properties of rhenium disulfide.
doi_str_mv 10.1016/j.cocom.2023.e00790
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cocom_2023_e00790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2352214323000072</els_id><sourcerecordid>S2352214323000072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-9f45a894a3034b3ef589885a426bdab0965535cb73fe05b8173785b7ab7152023</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEElXpF7DxD6Q4dpzHgkVVnlIlNrC2HGdMp0rsyHZA3fDtJJQFK1Yzc2fu1egkyXVG1xnNipvDWjvt-jWjjK-B0rKmZ8mCccFSluX8_E9_maxCOFBKWVFOYrFIvjYWg4veDagJdCrEqQ7TCD4iBOIMiR51h3bS2R3pVQSPqgtkDGjfSQs2YDwSM1od0VnVkbgH54_kE-OeqGHoUKt5Q6Ijfg8Wx560GMbOYAtXyYWZwmD1W5fJ28P96_Yp3b08Pm83u1SzsoppbXKhqjpXnPK84WBEVVeVUDkrmlY1tC6E4EI3JTdARVNlJS8r0ZSqKTMxc1km_JSrvQvBg5GDx175o8yonCnKg_yhKOdreaI4uW5PLphe-0DwMmgEq6FFDzrK1uG__m8Qhn8V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anisotropic elastic properties of triclinic 2D materials using density functional theory with application to rhenium disulfide</title><source>ScienceDirect Freedom Collection</source><creator>Maalouf, Serge R. ; Vel, Senthil S.</creator><creatorcontrib>Maalouf, Serge R. ; Vel, Senthil S.</creatorcontrib><description>In this paper, we present a rigorous and systematic approach for evaluating the linearized elastic stiffnesses of triclinic 2D materials. Unlike orthorhombic and hexagonal materials, triclinic 2D materials exhibit in-plane extension-shear coupling effects wherein axial stresses can cause a shear strain and a shear stress can induce axial strains. In the presented approach, the elastic stiffnesses of a 2D material are evaluated by curve fitting a constitutive model to either the strain energy densities or the stresses obtained for different strain states in strain space. The approach can be used to determine all the mechanical properties of a triclinic 2D material, including the coefficients of mutual influence that characterize the extension-shear coupling. The proposed approach is illustrated by evaluating the stiffness tensor of triclinic 2D rhenium disulfide using first principles calculations. The Young’s and shear moduli, the Poisson’s ratios and the coefficients of mutual influence of rhenium disulfide are presented along with the directional dependence of its mechanical properties. In addition, the degree of anisotropy of rhenium disulfide is discussed. •Anisotropic linear elastic response of triclinic 2D materials.•Coefficients of mutual influence of triclinic 2D materials.•Plane stress stiffness tensor of rhenium disulfide.•Linearized mechanical properties of rhenium disulfide.•Directional mechanical properties of rhenium disulfide.</description><identifier>ISSN: 2352-2143</identifier><identifier>EISSN: 2352-2143</identifier><identifier>DOI: 10.1016/j.cocom.2023.e00790</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Anisotropic elasticity ; Coefficients of mutual influence ; Extension-shear coupling ; Mechanical properties ; Rhenium disulfide ; Triclinic 2D material</subject><ispartof>Computational Condensed Matter, 2023-03, Vol.34, p.e00790, Article e00790</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278t-9f45a894a3034b3ef589885a426bdab0965535cb73fe05b8173785b7ab7152023</citedby><cites>FETCH-LOGICAL-c278t-9f45a894a3034b3ef589885a426bdab0965535cb73fe05b8173785b7ab7152023</cites><orcidid>0000-0001-6191-6037 ; 0000-0001-8804-112X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Maalouf, Serge R.</creatorcontrib><creatorcontrib>Vel, Senthil S.</creatorcontrib><title>Anisotropic elastic properties of triclinic 2D materials using density functional theory with application to rhenium disulfide</title><title>Computational Condensed Matter</title><description>In this paper, we present a rigorous and systematic approach for evaluating the linearized elastic stiffnesses of triclinic 2D materials. Unlike orthorhombic and hexagonal materials, triclinic 2D materials exhibit in-plane extension-shear coupling effects wherein axial stresses can cause a shear strain and a shear stress can induce axial strains. In the presented approach, the elastic stiffnesses of a 2D material are evaluated by curve fitting a constitutive model to either the strain energy densities or the stresses obtained for different strain states in strain space. The approach can be used to determine all the mechanical properties of a triclinic 2D material, including the coefficients of mutual influence that characterize the extension-shear coupling. The proposed approach is illustrated by evaluating the stiffness tensor of triclinic 2D rhenium disulfide using first principles calculations. The Young’s and shear moduli, the Poisson’s ratios and the coefficients of mutual influence of rhenium disulfide are presented along with the directional dependence of its mechanical properties. In addition, the degree of anisotropy of rhenium disulfide is discussed. •Anisotropic linear elastic response of triclinic 2D materials.•Coefficients of mutual influence of triclinic 2D materials.•Plane stress stiffness tensor of rhenium disulfide.•Linearized mechanical properties of rhenium disulfide.•Directional mechanical properties of rhenium disulfide.</description><subject>Anisotropic elasticity</subject><subject>Coefficients of mutual influence</subject><subject>Extension-shear coupling</subject><subject>Mechanical properties</subject><subject>Rhenium disulfide</subject><subject>Triclinic 2D material</subject><issn>2352-2143</issn><issn>2352-2143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEElXpF7DxD6Q4dpzHgkVVnlIlNrC2HGdMp0rsyHZA3fDtJJQFK1Yzc2fu1egkyXVG1xnNipvDWjvt-jWjjK-B0rKmZ8mCccFSluX8_E9_maxCOFBKWVFOYrFIvjYWg4veDagJdCrEqQ7TCD4iBOIMiR51h3bS2R3pVQSPqgtkDGjfSQs2YDwSM1od0VnVkbgH54_kE-OeqGHoUKt5Q6Ijfg8Wx560GMbOYAtXyYWZwmD1W5fJ28P96_Yp3b08Pm83u1SzsoppbXKhqjpXnPK84WBEVVeVUDkrmlY1tC6E4EI3JTdARVNlJS8r0ZSqKTMxc1km_JSrvQvBg5GDx175o8yonCnKg_yhKOdreaI4uW5PLphe-0DwMmgEq6FFDzrK1uG__m8Qhn8V</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Maalouf, Serge R.</creator><creator>Vel, Senthil S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6191-6037</orcidid><orcidid>https://orcid.org/0000-0001-8804-112X</orcidid></search><sort><creationdate>202303</creationdate><title>Anisotropic elastic properties of triclinic 2D materials using density functional theory with application to rhenium disulfide</title><author>Maalouf, Serge R. ; Vel, Senthil S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-9f45a894a3034b3ef589885a426bdab0965535cb73fe05b8173785b7ab7152023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anisotropic elasticity</topic><topic>Coefficients of mutual influence</topic><topic>Extension-shear coupling</topic><topic>Mechanical properties</topic><topic>Rhenium disulfide</topic><topic>Triclinic 2D material</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maalouf, Serge R.</creatorcontrib><creatorcontrib>Vel, Senthil S.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational Condensed Matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maalouf, Serge R.</au><au>Vel, Senthil S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic elastic properties of triclinic 2D materials using density functional theory with application to rhenium disulfide</atitle><jtitle>Computational Condensed Matter</jtitle><date>2023-03</date><risdate>2023</risdate><volume>34</volume><spage>e00790</spage><pages>e00790-</pages><artnum>e00790</artnum><issn>2352-2143</issn><eissn>2352-2143</eissn><abstract>In this paper, we present a rigorous and systematic approach for evaluating the linearized elastic stiffnesses of triclinic 2D materials. Unlike orthorhombic and hexagonal materials, triclinic 2D materials exhibit in-plane extension-shear coupling effects wherein axial stresses can cause a shear strain and a shear stress can induce axial strains. In the presented approach, the elastic stiffnesses of a 2D material are evaluated by curve fitting a constitutive model to either the strain energy densities or the stresses obtained for different strain states in strain space. The approach can be used to determine all the mechanical properties of a triclinic 2D material, including the coefficients of mutual influence that characterize the extension-shear coupling. The proposed approach is illustrated by evaluating the stiffness tensor of triclinic 2D rhenium disulfide using first principles calculations. The Young’s and shear moduli, the Poisson’s ratios and the coefficients of mutual influence of rhenium disulfide are presented along with the directional dependence of its mechanical properties. In addition, the degree of anisotropy of rhenium disulfide is discussed. •Anisotropic linear elastic response of triclinic 2D materials.•Coefficients of mutual influence of triclinic 2D materials.•Plane stress stiffness tensor of rhenium disulfide.•Linearized mechanical properties of rhenium disulfide.•Directional mechanical properties of rhenium disulfide.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cocom.2023.e00790</doi><orcidid>https://orcid.org/0000-0001-6191-6037</orcidid><orcidid>https://orcid.org/0000-0001-8804-112X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2352-2143
ispartof Computational Condensed Matter, 2023-03, Vol.34, p.e00790, Article e00790
issn 2352-2143
2352-2143
language eng
recordid cdi_crossref_primary_10_1016_j_cocom_2023_e00790
source ScienceDirect Freedom Collection
subjects Anisotropic elasticity
Coefficients of mutual influence
Extension-shear coupling
Mechanical properties
Rhenium disulfide
Triclinic 2D material
title Anisotropic elastic properties of triclinic 2D materials using density functional theory with application to rhenium disulfide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20elastic%20properties%20of%20triclinic%202D%20materials%20using%20density%20functional%20theory%20with%20application%20to%20rhenium%20disulfide&rft.jtitle=Computational%20Condensed%20Matter&rft.au=Maalouf,%20Serge%20R.&rft.date=2023-03&rft.volume=34&rft.spage=e00790&rft.pages=e00790-&rft.artnum=e00790&rft.issn=2352-2143&rft.eissn=2352-2143&rft_id=info:doi/10.1016/j.cocom.2023.e00790&rft_dat=%3Celsevier_cross%3ES2352214323000072%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c278t-9f45a894a3034b3ef589885a426bdab0965535cb73fe05b8173785b7ab7152023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true